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UNIVERSITE PARIS CITE

Abstract

On the bounded derived category of a Dynkin quiver

by Ricardo Felipe RoSADA CANESIN

This master’s thesis is an introduction to some techniques from the representation
theory of finite-dimensional associative algebras. We start with the definition of path
algebras and how to use quivers to study representations. In this direction, we prove
Gabriel’s classification of quivers of finite representation type in terms of Dynkin dia-
grams. Subsequently, we develop the theory of almost split sequences and irreducible
maps, due to Auslander and Reiten, and apply its results to better understand the
indecomposable modules over the path algebra of a Dynkin quiver. Lastly, we explore
what happens in the derived category of these algebras, culminating in a proof of the
fact that the bounded derived category of a Dynkin quiver is a fractionally Calabi-Yau
triangulated category.
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Introduction

The representation theory of associative algebras is an important and active area of
research in mathematics. Since its origins, it has undergone several changes as new
ideas have been proposed and explored. This master’s thesis serves as an introduction
to a few techniques developed during the last fifty years that have greatly influenced
the current shape of the subject.

In the first chapter, we start with the concepts of quiver and path algebra. The
mathematician Pierre Gabriel and his school extensively studied them in the 1970s and
unveiled their relevance for representation theory (see [15] for some results and more
references from that time). For example, they showed that, over an algebraically closed
field, modules over any algebra can be interpreted in terms of quivers and relations.
Gabriel also managed to classify which path algebras are of finite representation type:
they are precisely those coming from the Dynkin diagrams of type A; D and E. We
prove this unexpected connection with Lie theory in the second chapter and the first
appendix.

Around the same time, Maurice Auslander and Idun Reiten introduced the notion
of almost split sequences (|4], [5]). Their work was central in unifying some methods
employed by other authors and provided a good framework to study module categories
in general. We present the main definitions and theorems of this theory in the third
chapter, where we also show how to compute the Auslander-Reiten quiver of some
examples, including some of the Dynkin quivers from the previous chapter.

Besides Auslander and Reiten’s approach, other techniques from homological al-
gebra began being employed to better understand the representation theory of certain
algebras. For instance, in the late 1980s, Dieter Happel methodically studied the be-
havior of the derived category of a finite-dimensional algebra and obtained significant
results ([17], [18]). We will touch on some of his ideas in the fourth chapter, but our
main goal will be to prove the following theorem:

Theorem. If K is an algebraically closed field and ) is a Dynkin quiver, then the
path algebra K@ is fractionally Calabi-Yau.

As we will explain in detail, this roughly means that the bounded derived category
of K@ admits a special autoequivalence, called a Serre functor, which coincides with
a shift up to some power. The notion of a (fractionally) Calabi-Yau triangulated
category was introduced by Maxim Kontsevich (|24]), who was aware of the result
above. We will follow a recent and simple proof given in [12]| that also allows us to
compute the Calabi-Yau dimension of KQ.

The reader is assumed to be familiar with basic representation theory of algebras
in the level of what can be found in [2, Section I.1] or [3, Chapter I]. We will also use
some elementary category theory and homological algebra. Knowing about derived
categories is essential for the last chapter, but all definitions and results needed are
collected in an appendix, where further references are indicated.






Chapter 1

Quiver representations

The goal of this chapter is to set the stage for what is going to be developed afterwards.
Quivers and their representations, which will be the main subject of this thesis, are
defined. Although it is not essential for what is going to follow, it is important to
know the relevance of quivers for the representation theory of associative algebras,
notably due to Theorem 1.2.1. Thus, we will usually deal with the slightly more
general approach of quivers and relations. This will provide us with more examples
to illustrate Auslander-Reiten theory in Chapter 3. Lastly, the final section presents
some concepts that do not relate directly to quiver representations but that will show
up frequently in subsequent chapters.

The content of this part is mostly based on the initial chapters of [2| and [3]. Some
proofs will be incomplete and others will be omitted, but references for more details
will be given.

Remark. From now on, all algebras are going to be unital and associative. Modules
are right modules, unless stated otherwise. In general, they will be of finite dimension
over the base field.

1.1 Path algebras

This section introduces the notion of a path algebra of a quiver. The core definitions
are given and some initial properties are highlighted.

Definition 1.1.1. A quiver is a directed graph. More precisely, a quiver Q =
(Qo, Q1, s,t) consists of a set of vertices (Qp and a set of arrows @1, together with
two maps s,t : Q1 — Qo which specify the source and the target of each arrow,
respectively.

We use the notation o :  — y to denote an arrow a € ()7 whose source is
s(a) = x € Qo and target is t(a) = y € Q. Graphically, we can represent this data
by the following picture:

r—%=y

We will define quivers by their graphical representations. For example,

3
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4 Chapter 1. Quiver representations

represents a quiver with set of vertices Qo = {1,2,3,4,5}. Unless stated otherwise, a
quiver Q = (Qo, Q1) is always finite, that is, Qp and @ are finite sets. In this case,
we can suppose that Qo = {1,2,...,n} for some positive integer n, as in the example.

Remark. As illustrated above, our definition of quiver allows multiple arrows, arrows
from a vertex to itself (i.e., loops), and vertices with no arrows.

Definition 1.1.2. Let Q = (Qo, Q1, s,t) be a quiver. A path ajas---«q; of length
[ from x € Qo to y € Qo is a sequence of [ arrows such that s(ay) =z, t(ay) = y and
t(a;) = s(ajq1) for all 1 < i < [. For each vertex z € Qo, there is also a stationary
path ¢, of length zero from x to . Note that the domain of definition of s and ¢ can
be naturally extended to the set of paths of Q.

A path of nonzero length can be represented as

o a1l az o o
r =T 7 T2 7ot Ti4+1 =Y.

Concatenation defines a partial operation on the set of paths in a quiver. Two paths
p and ¢ in @ can be concatenated if ¢(p) = s(q) and, in this case, we denote their
concatenation by' pg. For example, a path of the form ajag--- oy is the successive
concatenation of the arrows aq, as, ..., q, as the notation suggests.

We can upgrade concatenation to an algebra product:

Definition 1.1.3. Let K be a field and @) be a quiver. The path algebra K@ is
the K-algebra whose underlying vector space has as a basis the set of paths in @ and
such that the product of two basis vectors p and ¢ is given by

_ Jpq ift(p) = s(qg),
p-qg= .
0  otherwise.
The product is extended to all elements by bilinearity.

Since concatenation of paths is associative, the path algebra is indeed an associa-
tive algebra. Moreover, since we assume Qg is finite, we can form the element

g Ex,
z€Qo

which is the identity element for K Q.
Some familiar examples can be realized as path algebras:

Example 1.1.4. Let @) be the following quiver:

«

~

1
A basis for the path algebra K@ is the set
{51,0&, 042, a37 st }a

where o™ is the concatenation of o with itself n times, for n > 1. With this infor-
mation, it is easy to see that the homomorphism K[z] — K@ from the algebra of
polynomials to the path algebra that sends z to « is an isomorphism.

MIf p is a stationary path, the concatenation is just ¢, and vice versa.
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Example 1.1.5. If @) is the quiver
1 —— 2,

the path algebra K@ is three-dimensional with a basis given by the paths 1,9 and
a. We have the following identities:

=g (i=1,2),
€189 = 0 = e9¢1,
100 = @ = (Eg,
eoa = 0 = aeq,

a? = 0.

Therefore, if T5(K) is the algebra of 2 x 2 upper triangular matrices with entries in
K, we have an isomorphism T5(K) — KQ sending F1; to €1, E9 to g2 and Eg to «,
where E;; denotes the elementary matrix which has value 1 in the entry (,j) and 0
elsewhere.

A similar argument shows that the algebra T),(K) of n x n upper triangular ma-
trices with entries in K is isomorphic to path algebra of the quiver

1 2 3 n.

In general, if @@ has no multiple arrows and its underlying graph is a tree, K@ is
isomorphic to some subalgebra of T,,(K), where n is the number of vertices of @ (see
|3, Chapter II, Lemma 1.12]).

Note that the first example is infinite-dimensional, while the second is not. This
happens due to the existence of cycles only in the first quiver. A cycle (or, more
precisely, an oriented cycle) is a path of positive length which starts and ends at the
same vertex. If p is a cycle in @), then p can be concatenated with itself as many times
as we want, showing that there are infinitely many distinct paths in @) or, equivalently,
that K@ is infinite-dimensional. On the other hand, if @) is acyclic, that is, if () has
no cycles, then there are only finitely many paths in @ since @ is finite.

The second example also illustrates some algebraic properties of the stationary
paths €, for z € Qg. They are idempotents: they are equal to their squares.
Furthermore, they are orthogonal, that is, e,6, = ,6, = 0 for distinct z,y € Qo.
It is not hard to show that they cannot be written as a sum of nonzero orthogonal
idempotents, so they are also primitive. Since the sum of all stationary paths is the
identity element, they form a complete set of primitive orthogonal idempotents

of KQ.

Remark. For a finite-dimensional algebra A, a complete set of primitive orthogonal
idempotents {eq, ..., ey} gives rise to a decomposition of the regular right module A4 4
as a sum of indecomposables:

AAzelAEBGQA@“-@enA.

Every such decomposition appears in this way. Therefore, knowing a complete set
of idempotents allows us to study indecomposable projective A-modules. We will do
this for path algebras in Section 1.3.

Another important fact to know is when path algebras are connected. An algebra
A is connected if its only central idempotents are 0 and 1. Equivalently, if we write
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A = A; x Ay as a direct product of two algebras A; and As, then A; =0 or As = 0.
A path algebra K@ has this property exactly when @ is connected, that is, if we
forget the orientation of the arrows in @), then every two vertices of () are connected
by some undirected path. A proof of this result can be found in |3, Chapter II, Lemma
1.7].

In the finite-dimensional case, that is, when @ is acyclic, it is easy to describe the
radical of K@Q. Let Rg be the two-sided ideal of K@) generated by the arrows in @,
the so-called arrow ideal. Note that Rpy is the ideal generated by all paths of length
m > 11in Q. Since @ is acyclic, there is a maximal length a path can have, which
implies that R is a nilpotent ideal. Moreover, the quotient K@ /R is isomorphic to
a direct product of copies of K (one for each vertex of @)) and so is semisimple. These
two properties guarantee that rad(KQ) = Rg.

Since the quotient of K@ by its radical is a direct product of division algebras, it
follows that K@ is a basic algebra. In terms of modules, this means that, if we have
a decomposition

KQ=P1)®P(2)&-- @ P(n)

of the regular module as a sum of (projective) indecomposable modules, then P(i) 2
P(j) for i # j. In particular, we have e,(KQ) % ¢,(KQ) for distinct z,y € Qo.
We finish this section by collecting all the properties above in the same place.

Proposition 1.1.6. Let K be a field and @ be a quiver.

(1) A complete set of primitive orthogonal idempotents of the path algebra K@ is
given by the set
{e. € KQ |z € Qo}

of stationary paths.
(2) KQ is a connected algebra if and only if @) is a connected quiver.

(3) KQ is a finite-dimensional algebra if and only if @ is acyclic. In this case, KQ
is a basic algebra and its radical is the arrow ideal.

1.2 The Ext-quiver of an algebra

Let A be a finite-dimensional K-algebra. In this section, we will see how to associate
a quiver to A which will later help us understand its representation theory.

First of all, since we are only interested in studying the category of A-modules,
we can assume A is basic. Indeed, if P(1), P(2),..., P(n) represent all distinct iso-
morphism classes of indecomposable projective A-modules and if we set

P:=P1)®P2)® - @ P(n),

it is possible to show that the algebra B = End4(P) is basic. Since the regular
module A4 is a direct sum of the P(i)’s (but maybe with multiplicities), A4 is a
direct summand of P™ for some n > 1, showing that P is a progenerator. By the
Morita theorem, A is Morita equivalent to B, that is, their module categories are
equivalent!.

Remarkably, over an algebraically closed field, this assumption is enough to guar-
antee that A is a quotient of a path algebra.

! An introduction to Morita theory can be found in [27, Chapter 7], and a more direct proof for
the fact that A and B are Morita equivalent is given in [3, Section 1.6].
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Theorem 1.2.1. Let K be an algebraically closed field. If A is a basic and finite-
dimensional K-algebra, then A = K@Q/I for some finite quiver ) and some admissible
ideal I of KQ.

An ideal I of K@ is admissible if it satisfies
2
Ry €1 C R,

for some m > 2, where Rq is the arrow ideal. In this case, we call the pair (Q,I)
a bound quiver and the quotient K@Q/I a bound path algebra. Since @ is not
necessarily acyclic, the first inclusion ensures that paths of length greater than m
become zero in K@Q/I, so this quotient is of finite dimension. On the other hand, the
second inclusion allows us, among other things, to recover @ from KQ/I, as we will
see.

A detailed proof of Theorem 1.2.1 can be found in |2, Theorem 1.2.13] or in |3,
Chapter II, Theorem 3.7]. We will just give a sketch. The first step is to generalize
Proposition 1.1.6:

Proposition 1.2.2. Let K be a field and ) be a quiver. Let I be an admissible ideal
of the path algebra KQ.

(1) A complete set of primitive orthogonal idempotents of K@ /I is given by the set

{e. € KQ/I | z € Qo},

where e, = ¢, + I for z € Q.
(2) KQ/I is a connected algebra if and only if @ is a connected quiver.

(3) KQ/I is a basic algebra and its radical is Rg/I, where R¢g denotes the arrow
ideal of KQ.

Proof. This is [3, Chapter II, Corollary 2.12]. O

Let us suppose that A = K@Q/I for the moment. The proposition above tells us
that there is a bijection between the set of vertices Qg and a complete set of primitive
orthogonal idempotents of A. Moreover, using that I C RQQ, we have an isomorphism
of vector spaces:

rad(A)  Rq/I ~ g
rad®(4)  R3/I Ry

The residual classes of the arrows in () form a basis of this space. Thus, a basis of

. ( rad(A) > .
“\rad?(4))
is in bijection with the set of all arrows from x € Qg to y € QQp. Taking the dimension

of this vector space and varying x and y, we are able to recover Q.
This motivates the following definition.

Definition 1.2.3. Let A be a basic finite-dimensional algebra and {ej,ea,...,e,} a
complete set of primitive orthogonal idempotents. The Ext-quiver Q4 of A is the
quiver whose set of vertices is {1,2,...,n} and such that the number of arrows from
1 to j is given by the dimension of the K-vector space

()
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for all 4,5 € {1,2,...,n}.

Remark. The reason for the name “Ext-quiver” comes from a different construction of
@ 4 using the Ext functor which we now describe. Since A is basic, the map e; — ¢; A
defines a bijection between the given complete set of primitive orthogonal idempotents
and the set of isomorphism classes of indecomposable projective modules. The latter,
in turn, corresponds to the set of isomorphism classes of simple modules via the map

eiA
eiA — tOp(elA) = m

One can show (see [3, Chapter III, Lemma 2.12]) that there is a linear isomorphism

rad(A) >

Extl (top(e;A), top(e;A)) = e; | —s—= | €;.

A( p( 7 )7 p( ] )) 2 <rad2(A) )

Therefore, @@ 4 could have been defined as the quiver whose set of vertices is the set of
isomorphism classes of simple modules and such that the number of arrows from S to
T is the dimension of ExtY(S,T) over K. Note that this definition does not depend
on the choice of a complete set of primitive orthogonal idempotents.

We can now sketch the proof of Theorem 1.2.1. Let {ej,eq,...,e,} be a complete
set of primitive orthogonal idempotents of A and construct the Ext-quiver Q4. Given

two vertices z,y € (Q4a)o, let aq, ..., ay, be all arrows from z to y. By the definition
of Q4, there are elements aq,, ..., aq,, € ex(rad(A))e, whose residual classes form a
basis of

This choice of elements defines a linear map ¢ : KQ4 — A which takes a stationary
path e, to e;, an arrow «a to a, and a path ajas--- g to

90(041)@(042) .. 80(041) = Qa1 Qay * " Qoy -

Since ey, ..., e, are orthogonal idempotents and since for each arrow o : * — y we
have an = ezaqey, it is not hard to see that ¢ is a homomorphism of algebras.

One can show that ¢ is surjective. The difficult part is to prove that the products
of the elements a,, generate rad(A). On the other hand, since A is basic, A/ rad(A) is
a direct product of division algebras. Recalling that K is algebraically closed, these
division algebras are actually copies of K and we deduce that the residual classes of
ei,...,en generate A/rad(A). Therefore, the elements e, for z € (Q4)o and a, for
a € (Qa)1 generate A and the surjectivity of ¢ follows.

From this information, we have A = KQ4/I for I = kerp. By construction,
observe that ¢(Rg,) C rad(A). Since A is finite-dimensional, rad(A) is a nilpotent
ideal and we can find an integer m > 2 such that ¢(Rp ) C rad(A4)™ = 0. Thus,
RSA C I. Some further calculations show that I C R%A and we conclude that I is an
admissible ideal of K@ 4. This completes the proof.

Remark. We used that K is algebraically closed only to guarantee that A/rad(A)
is a direct product of copies of K. An algebra satisfying this property is called ele-
mentary. We can remove the hypothesis on K with we assume that A is elementary
rather than just basic.

It is possible to work with general basic algebras over non-algebraically closed
fields. To do so, the main idea is to add the data of the endomorphism rings of
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the simple modules into the definition of quiver, what leads us to the notion of a
“modulated quiver”, also known as a “species”. However, some hypothesis on K are
still necessary for Theorem 1.2.1 to hold. We refer the reader to [8, Section 4.1] for
more details.

Example 1.2.4. Let us illustrate the proof above with a concrete example. Inside
the algebra of 3 x 3 matrices over K, consider the subalgebra

K K K
A=10 K 0
0 0 K

The diagonal elementary matrices F11, Fos and Fs3 form a complete set of primi-
tive orthogonal elements of A, because they do the same for the full matrix algebra.
Furthermore, we have

0 K K
rad(A)={0 0 0
00 0

since this is a nilpotent ideal of A satisfying A/rad(A) =2 K x K x K. This also
shows that A is elementary. Note that rad®(A) = 0, hence, in order to construct
the Ext-quiver Q4 of A, we have to find the dimensions of E;;rad(A)E;; as we vary
i,7 € {1,2,3}. Only two of these subspaces are nonzero:

E11 I“ad(A)EQQ and E11 rad(A)E33,

and they are generated by the elementary matrices F12 and FEj3, respectively. We
conclude that @) 4 is the quiver

2%1&‘3.

We get a surjective homomorphism ¢ : KQ4 — A sending ¢; to E;; (i =1,2,3), a to
FE15 and 5 to Eq3. Since K@ 4 and A are both five-dimensional, ¢ is an isomorphism.

1.3 Modules over bound path algebras

In order to understand the representation theory of a finite-dimensional algebra A
over an algebraically closed field K, Theorem 1.2.1 says that we can suppose A is a
bound path algebra. It does not simplify our problem very much, but at least gives
us a graphical way of writing modules which is helpful to calculate examples. We will
see how we can do this in this section.

Definition 1.3.1. Let @ be a quiver and K be a field. A representation M =
(Mz, ©a)zeQo,acq, of Q is the data of:

e a K-vector space M, for each vertex z € Qq;
e a linear transformation ¢, : M; — M, for each arrow o : z — y in Q1.

We will write just M = (Mg, ¢q) to simplify the notation. If N = (N,, ¢!)) is another
representation, a morphism f: M — N is a collection of linear maps f, : M, — N,
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for each x € Qg such that, for every arrow a : © — y, we have a commutative diagram

M, — 5 N,

Sﬂai i@o’a
fy
M, —— N,,.
If we define composition of morphisms vertex-wise, we get the category Rep(Q) of
representations of Q). We denote by rep (Q) the full subcategory of representations
of finite dimension, that is, representations M = (M,, ¢,) where each M, is finite-
dimensional.

Remark. Note the similarity between a morphism of representations and a natural
transformation of functors. This observation can be upgraded to an equivalence of
categories. For a quiver @), we can define its free category C'Q: objects are the vertices
of @ and the set of morphisms from one vertex to another is the set of paths between
them. Composition is given by concatenation. It is easy to check that Repg(Q) is
equivalent to the category of functors from C'Q to the category of K-vector spaces.
Notice also that Repy (Q) is naturally a K-category, that is, all the Hom-sets are
K-vector spaces and composition is bilinear. Moreover, Rep(Q) and repg(Q) are
both abelian. These facts can be deduced, for example, from the equivalence above.

Let M = (M,, @) be a representation of ). For every nonstationary path w =
ajag---ap from x € Qo to y € Qo, we can define a linear map ¢y, : M, — M, by
setting

Pw = PayPay_1 """ Pay -

If p € K@ is a relation, that is, a linear combination of paths of length at least
two having the same source and the same target, then we can extend linearly the
construction above to define ¢,. This allows us to define representations of bound
quivers.

Definition 1.3.2. Let ) be a quiver and I be an admissible ideal of K Q. A repre-
sentation M = (M, ) of @ is bound by I if ¢, = 0 for every relation p € I. In
this case, we say that M is a representation of the bound quiver (Q, I).

The full subcategory of Repy(Q) of representations bound by I is denoted by
Repg (Q, I). We define analogously the full subcategory repy(Q, I) of repy(Q).

Example 1.3.3. Let ) be the quiver
2 B
e
N
1 4
N
3
An example of a representation of (Q is given by
K2
o N
K
<p%* /905
K

K2 P
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where the maps are represented by the following matrices in the canonical bases:

T N R A !

Now, let I be the ideal of KQ generated by the relations o8 — 6 and A\2. It is easy
to check that I is an admissible ideal. Since

pava — sy =0 and @} =0,
the representation above is bound by I.

The reason for introducing these definitions is that they essentially describe mod-
ules over the bound path algebra.

Theorem 1.3.4. Let (Q,I) be a bound quiver and define A = K@Q/I. There exists
a K-linear equivalence of categories

F :Mod A — Repg(Q, 1)

which restricts to an equivalence between mod A and rep (Q, I).

We denote by Mod A the category of right A-modules and by mod A its full sub-
category of finite-dimensional modules. If we worked with left modules instead, then
we would get an equivalence with Rep (Q°P, I°P), where Q°P is the quiver obtained
from @ by reversing the arrows and I°P is obtained from I by reversing the paths.

Proof. By Proposition 1.2.2; there is a canonical complete set of primitive orthogonal
idempotents {e; € A |z € Qo} of A. We will use them to define the functor F.

Let M be an A-module and let us construct a representation F'(M) of (Q,I). For
each vertex = € Q, we define F(M), = Me,. For each arrow o : z — y in Q1 we
associate the linear map

Yo 1 Me, — Me,

m —— Mma,

where @ is the residual class of & in A = K@Q/I. This is well-defined since @ = @e,,.
In this way, we get a representation of () and one can check that it is bound by I,
since relations in I become zero after taking the quotient.

Now, let us define F' on morphisms. Given a homomorphism f : M — N of
A-modules, note that f(Me,) C Ne, for all x € Qy. Hence, for each = € Qq, we
have a linear map F(f), : F(M), — F(N), which is simply the restriction of f.
Since f commutes with the action of A on M and N, this defines a morphism of
representations F(f) : F(M) — F(N). It is clear that the resulting association F' is
indeed a K-linear functor from Mod A to Repg (@, I).

In order to show that F' is an equivalence, we just have to find a quasi-inverse
G : Repg(Q,I) — Mod A. For a representation M = (Mg, q) of (Q,I), let G(M)
be the K-vector space

P ..

z€Qo

We can endow G(M) with a K@Q-module structure as follows: for a path of nonzero
length w € K@ from 7 to j, remember that we have a linear map ¢,, : M; — M;. We
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define the action of w on G(M) as the composition

P M. » P M.,

TEQo €Qo

~
S

)

€
~
=

where the unspecified maps are the natural projection and the natural inclusion,
respectively. For a stationary path ¢;, we replace the middle map above by the identity
map of M;. It is not hard to prove that G(M) really becomes a K @Q-module in this
manner. Notice that I annihilates G(M) because M is bound by I, so G(M) can be
seen as an A-module.

Finally, let us define G on morphisms. A morphism of representations f : M — N
is a collection of maps f, : M, — N, for each z € @)y, so we can form the linear map

G(f) = B fx: G(M) - G(N).

T€Qo

The compatibility condition between the maps f, implies that G(f) is a homomor-
phism of A-modules, as desired.

We omit the verification that F' and G are quasi-inverses for each other. For the
last statement in the theorem, it is enough to note that F'(M) is finite-dimensional if
and only if M is, since the direct sums above are finite. O

Remark. When we said that I annihilates G(M) because M is bound by I, we
implicitly used that I is generated by relations. This is true because any element

p € I can be written as
p= > empsy

I7y€Q0

and each e;pe, € I is a relation since I C R%. This was the only property of I we
used. Thus, Theorem 1.3.4 holds more generally. For example, if @) is any quiver,
then Mod K@ is equivalent to Rep (@), even if @ is not acyclic.

For the rest of the section, we fix A = KQ/I for some bound quiver (@, I). Using
Theorem 1.3.4, we will identify A-modules and representations of (@, ). This will
help us to describe, in particular, the simple, projective and injective A-modules.

For each = € @y, we can define a representation S(z) by setting

K ify=ux,
S(fp)y:{

0 otherwise,

and, for each arrow, we associate the zero map. It is clear that S(z) is bound by I.

Lemma 1.3.5. If x € Qq, then S(z) is a simple A-module isomorphic to the top of
the indecomposable projective A-module e, A. In particular, the set

{5(z) |z € Qo}
is a complete set of representatives of the isomorphism classes of simple A-modules.

Proof. Since S(z) is an one-dimensional A-module, it is simple. Moreover, we have a
linear isomorphism

Homy(ey A, S(z)) = S(x)e, = S(z), = K.
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In particular, there is a nonzero map e, A — S(z). Since the top of an indecomposable
projective module is simple, we conclude that top(e;A) = S(x).

There is a bijection between the set of indecomposable projective modules and the
set of simple modules that sends a projective module to its top. Since {e, | x € Qo}
is a complete set of primitive orthogonal idempotents and A is basic, the set

{ezA]x € Qo}

represents all distinct isomorphism classes of indecomposable projective modules. The
second statement of the lemma then follows. O

Given = € Qq, we denote by P(x) the indecomposable projective A-module e, A.
These modules have a simple description too:

Lemma 1.3.6. Let z € Q.

(1) If we write P(x) as a representation (P(z)y, @), then P(x), is the subspace
of A generated by the residual classes of paths from z to y, and, for an arrow
a:y — z, the map ¢, : P(x)y — P(z), is given by right multiplication by
a=a+1.

(2) The radical rad(P(x)) has the same description, except that we only consider
paths of nonzero length from x to y when defining rad(P(z)),.

Proof. Using the equivalence from Theorem 1.3.4, we have
P(x)y = P(x)ey = ez Aey.

Since A is generated by the residual classes of paths in (), the subspace above is
generated by the residual classes of paths from z to y. It also follows from the proof
of this theorem that ¢, is right multiplication by @. In this case, we can interpret it
as concatenation with a.

For the second part, recall from Proposition 1.2.2 that the radical of A is given by
Rg/1, which is generated by the elements @ for o € Q1. Thus,

rad(P(z)) = P(x) -rad(A) = Z P(z)a.
a€@Qq
In particular, given y € Qo, rad(P(z)), = rad(P(z))e, equals
Y P@a= Y P)ea)= » P).a= Y img,.

If y # «, then every path from x to y is the concatenation of a path from = to some
vertex z € Qo with an arrow « : z — y. In other words, rad(P(z)), = P(x)y.
The same is true for every path from x to x apart from the stationary path, so that
rad(P(z)), is generated by the residual classes of paths of nonzero length from z to
2. This completes the proof. O

Remark. If M = (M,, p,) is a representation of (Q,I), the same argument shows
that rad(M) is the representation N = (N, 1) where

N, = Z im g

Qy—T

and each 1, is the restriction of .
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For the study of the indecomposable injective modules, let us recall some facts
about duality for finite-dimensional algebras'. Given a right A-module M, we define
the dual vector space

DM = Homg (M, K).

This space acquires a structure of left A-module if we set

(a- f)(m) = f(ma)

for f € DM, m € M and a € A. We can naturally extend D to a functor and, in the
finite-dimensional case, it becomes a duality

D : mod A — mod AP,

that is, D is a contravariant functor and defines an equivalence between the opposite
category of mod A and the category mod A°P. The quasi-inverse is also given by taking
dual spaces and we will denote it by D too. They are called the K-duality functors.

One consequence of this duality, for example, is that an A-module M is injective
if and only if DM is projective. Therefore, the indecomposable injective right A-
modules are of the form D(Ae) for some primitive idempotent e € A. This module is
the injective hull of

soc(D(Ae)) = D top(Ae),

which is a simple module.

Returning to the case of a bound path algebra A = KQ/I, it is not difficult
to see that A°P = KQ°P/I°P. Hence, mod A°P is equivalent to repy (Q°P,I°P), as
we highlighted after stating Theorem 1.3.4. We already know how to describe the
projective modules in mod A°? by Lemma 1.3.6, so we just have to take the dual
space to study the injective modules. Observe that, in the context of representations,
the dual of (Mz, pa)zeqeracqer 18 simply (DMy, Dpace)zeqo,acq-

Given x € @, we denote by I(x) the indecomposable injective A-module D(Ae;).
Its socle is isomorphic to S(z). Dualizing Lemma 1.3.6, we get:

Lemma 1.3.7. Let z € Q.

(1) If we write I(z) as a representation (I(z)y,¥q), then I(z), is the dual of the
subspace of A generated by the residual classes of paths from y to x, and, for
an arrow o :y — z, the map ¢, : I(z)y, = I(x), is given by the dual of the left
multiplication by & = o + I.

(2) The quotient I(z)/soc(I(x)) has the same description, except that we only
consider paths of nonzero length from y to  when defining (I(z)/soc(I(x)))y.

Example 1.3.8. Let @ be the following quiver:

12y F o3 7.y

Let I be the admissible ideal generated by the relation a8y and consider the bound
path algebra A = K@Q/I. Let us compute the projective and the injective indecom-
posable modules.

The projective ones are easily obtained from Lemma 1.3.6:

Pl)= K 4y gk M, K > 0,

! A more detailed explanation is found in [14, Section 9.1].



1.4. The Nakayama functor and the Grothendieck group 15

P(2)= 0 K4y g4, K,
P(3)= 0 0 K 45 K,
P(4) = S(4)

Notice that the last space in P(1) is zero because the unique path from 1 to 4 is a3,
which becomes zero in the quotient.

In order to find the injective modules, we repeat the procedure above with the
opposite quiver Q°P (bound by the “opposite” relation v°P3°Pa°P) and then we apply
the duality functor. We get:

1(1) = 5(1),

I2)= K 45 K 0 0,
I3)= K 4 Kk 4, K 0,
I4)= 0 K-y gy K

In this case, we have I(3) = P(1) and I(4) = P(2).

1.4 The Nakayama functor and the Grothendieck group

In the end of the previous section, we saw that there is the same number of projective
and injective indecomposable modules over a finite-dimensional K-algebra A, up to
isomorphism. It turns out that there is in fact an equivalence

v:projA — inj A

between the full subcategories proj A and inj A of mod A whose objects are the pro-
jective and the injective modules, respectively. This section presents some properties
of the functor v above, which will be extremely important in Chapter 4.

The K-duality functor restricts to a duality between projective and injective mod-
ules, but it interchanges left and right modules. For example, we have a duality

D : proj A°® — inj A.
In order to construct the functor v, it is enough to find another duality
D' : proj A — proj AP,

because then the composition DD’ will be a covariant functor defining the desired
equivalence.
A duality that works in this scenario is given by the A-duality functor

(=)' :== Homa(—, A4) : mod A — mod A°P.

In this case, if M is a right A-module, then M! = Homy4(M, A4) becomes a left
A-module with

(a- f)(m) = af(m)

for f € M!, m € M and a € A. Similarly, there is a functor going in the other
direction given by Hom gop (—, 4A). We will also denote it by (—)’.
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Lemma 1.4.1. The A-duality functor (—)! restricts to a duality between proj A and
proj A°P. A quasi-inverse is also given by (—).

Proof. Firstly, let us see that the A-duality functor sends projectives to projectives.
Since it is an additive functor, it is enough to check this property for indecompos-
able projective modules. Indeed, if e € A is a primitive idempotent, we have an
isomorphism of left A-modules

(eA)t — Ae
fr—=fle),

and Ae is again projective.
Now, for any left (or right) A-module M, we have the evaluation morphism @, :
M — M defined by

sy (m)(f) = f(m)

for m € M and f € M'. Tt is a homomorphism of left (or right) A-modules and it
is natural in the variable M. Furthermore, using the isomorphism A® = A (as left
or right modules), one can check that ¢4 is an isomorphism. Since the A-duality
functor is additive, it follows that ¢ is an isomorphism whenever M is projective.
This shows that applying (—)* twice, starting either from proj A or from proj A°P, is
naturally isomorphic to the identity functor of the starting category. In other words,
we have the duality from the statement. O

As a corollary, we can define our especial functor:

Definition 1.4.2. The Nakayama functor v : mod A — mod A is defined as the
composition of the A-duality and the K-duality functors:

v = D(—)" = DHoma(—, Ay).
It restricts to an equivalence from proj A to inj A.

The quasi-inverse for the equivalence above is given by the restriction of the functor
v~!:mod A — mod A defined as the composition in the other order:

vt i= (D(-))" = Homgor (D(—), 4 A).

Since D is a duality and D? is naturally isomorphic to the identity functor, we can
write

Hom gop (D(—), A) = Homa (DA, D*(—)) = Homa (DA, —).

We are considering DA as a right A-module above. It also has a structure of left
A-module, which turns Hom (DA, —) into a right A-module.
The Nakayama functor also has an alternative description using the bimodule D A.

Proposition 1.4.3. The Nakayama functor v is naturally isomorphic to the functor
— QA DA.

Proof. Since D is a contravariant exact functor and Hom(—, A) is a contravariant
left exact functor, it follows that v is a covariant right exact functor. Moreover, v is
additive and

vA = DHomy(A,A) =2 DA

as bimodules. The result follows from the Eilenberg-Watts theorem (see [1, Chapitre
V, Théoréme 3.2]). O
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Remark. Over the whole module category, v and v~! are not quasi-inverses, but
they form a pair of adjoint functors by the “tensor-hom” adjunction.

It will be useful to know how v acts on the Grothendieck group of A. Let us first
recall what this is. A more detailed exposition can be found in |2, Section I.1.4] and
in [3, Section III.3].

Definition 1.4.4. The Grothendieck group Ky(A) of A (more precisely, of mod A)
is the quotient of the free abelian group on the set of isomorphism classes [M] of
modules M in mod A by the subgroup generated by all expressions of the form

[L] — [M] + [N]
whenever there is a short exact sequence

0 > L > M N 0.

The element in K(A) corresponding to a module M will also be denoted by [M].

If {S(1),...,8(n)} is a complete set of representatives of isomorphism classes of
simple A-modules, then we have an isomorphism of abelian groups

dim : Ko(A) — Z"
[M] — (MI(M)ﬂ s 7Mn(M))a

where p;(M) denotes the multiplicity of S(i) as a composition factor of M, for all
1 < ¢ < n. In particular, the elements [S(1)],...,[S(n)] form a basis of the free
abelian group Ky(A). The vector dim([M]), or simply dim M, is called the dimension
vector of M.

Remark. If A = KQ/I for some bound quiver (Q, ) with Qo = {1,...,n}, we could
have defined dim as the function given by

It follows easily from Lemma 1.3.5 that this definition agrees with the original one,
justifying the name “dimension vector”.

When A is an algebra of finite global dimension, that is, when every finite-
dimensional module has a finite projective (or, equivalently, injective) resolution,
Ky(A) has also two other noteworthy bases. For the following, {P(1),..., P(n)} and
{I(1),...,1(n)} will denote complete sets of representatives of indecomposable pro-
jective and indecomposable injective modules, respectively, and we enumerate them

so that S(i) = top(P(i)) = soc(I(7)).
Lemma 1.4.5. If gldim A < oo, then the sets

{P],-- . [P} and {[I(D)],..., [I(n)]}

are bases for the Grothendieck group Ko(A).

Proof. We will prove the result for the projective modules. The other case is similar.
If 1 <i <mn, then S(i) has a finite projective resolution by hypothesis, that is, we
have an exact sequence

0 > P » Py Py > S(1)

~
o
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where Py, ..., P, are finite-dimensional projective modules. In the Grothendieck
group, this gives us an equality:

(5] = > (~1)[P)).
=0

J

Each P; is a direct sum of copies of the modules P(1),...,P(n), so we can write
[S(7)] as a linear combination of the first set in the statement. This holds for all
i. Since {[S(1)],...,[S(n)]} is a basis for Ko(A) and has the same cardinality of
{[P(1)],...,[P(n)]}, this latter set must be a basis too. O

Remark. We can consider the dimension vector of the modules P(1),..., P(n) as the
columns of a n x n matrix. This is the Cartan matrix C4 of A. The rows of C4 are
the dimension vectors of the modules I(1),...,I(n) (see [3, Chapter III, Proposition
3.8]). When gldim A < oo, the argument above shows that C4 has a right inverse,
thus it is invertible since it is a square matrix.

This result allows us to define an important transformation.

Definition 1.4.6. Suppose gldim A < oo. The Coxeter transformation of A is
the map

CA : Ko(A) — K()(A)
[P ()] — —[1(9)].

By Lemma 1.4.5, this is a well-defined invertible map.

Remark. Using the basis of projective modules for the domain and the basis of
injective modules for the target, c4 is represented by the opposite of the identity
matrix. Changing back to the canonical basis of simple modules, we get that c4 is
represented by the matrix CY - (—1I,,) -C’Zl = —CQCZI. This is the Coxeter matrix
of A.

If P(i) = eA for some primitive idempotent e € A, then
vP(i) =2 DHomy(eA, A) = D(Ae) = 1(i).
Therefore, for any projective module P we have the equality
ea([P]) = — [P,

It does not hold for arbitrary modules because v is not exact, so it does not induce a
well-defined map on the Grothendieck group. However, in Section 4.3, we will consider
the derived functor of v and the equality above will make sense more generally.

There are two reasons for putting a minus sign in the definition of c4. Firstly,
in some cases, c4 coincides with a Coxeter element coming from the theory of root
systems (see Section A.3). Secondly, it also coincides with the action of the Auslander-
Reiten translation in the Grothendieck group of the bounded derived category of
mod A (see Lemma 4.3.4). We explore these facts in Chapter 4.
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Chapter 2

(zabriel’s theorem

One of the main objectives of representation theory is to classify all representations
of a given object, up to isomorphism, and them understand the morphisms between
them. However, this task is in general unfeasible and there is no hope of finding a
complete classification theorem. In this sense, it is important to know if we are dealing
with these “wild” cases or not. The most promising case is that of finite representation

type.

Definition 2.0.1. Let A be an algebra over a field K. We say that A is of finite
representation type if there are only finitely many isomorphism classes of finite-
dimensional indecomposable A-modules.

In this chapter, we will restrict ourselves to path algebras of quivers and give a
proof (following [11] and [13]) of a famous result due to Pierre Gabriel:

Theorem 2.0.2 (Gabriel). Let @ be a finite quiver and K an algebraically closed field.
The path algebra K@ is of finite representation type if, and only if, the underlying
graph of () is a disjoint union of Dynkin diagrams of type A, D or E.

The first remarkable aspect of the theorem above is that the orientation of the
quiver is irrelevant. The representation type depends only on the underlying graph,
which is obtained by forgetting the orientation of the arrows and considering them as
normal edges in a graph.

The second striking fact is the appearance of the Dynkin diagrams, which come
from the seemingly unrelated theory of root systems. Those that we are concerned
are divided into the two infinite families A and D, and the finite family E. They are
the following:

A,: oe—e——e—e (n>1)

S S
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The subscript indicates the number of vertices in the corresponding graph. For what
follows, we will say that the quiver @) is a Dynkin quiver if its underlying graph is
one of the Dynkin diagrams above.
The connection with root systems does not stop here. We will see that, for these
quivers, the map
M +—— dim M

defines a bijection between the set of isomorphism classes of indecomposable modules
in mod K@ and the set of positive roots of the root system associated to . This is
the fact that will prove the finiteness property in the theorem.

Remark. Note that the statement does not require that @ is acyclic. Thus, Gabriel’s
theorem implies that, if K@ is not of finite dimension, then it cannot be of finite
representation type. Nevertheless, we will stick to finite-dimensional algebras and
focus on the case when @ is indeed acyclic.

We can also assume that @) is connected because, otherwise, K decomposes as a
direct product of smaller path algebras and mod K@ is equivalent to the product of
their module categories.

From now on, K will denote an algebraically closed field and all modules will be
of finite dimension over K.

2.1 Hereditary algebras

One important property of path algebras is that they are hereditary. Let us first recall
what this means.

Definition 2.1.1. A finite dimensional K-algebra A is hereditary if the following
equivalent conditions hold:

1

(
(2
(
(

Every submodule of a projective A-module is projective.
The radical of any indecomposable projective A-module is projective.

3

The global dimension of A is at most one.

)
)
)
)

4) For every A-module M and n > 2, we have

Ext (M, —) = 0 = Ext"} (—, M).

For a proof of the equivalence of the conditions above and for some further prop-
erties of hereditary algebras, see [1, Chapitre XII, Section 1] or |3, Section VII.1|.

Proposition 2.1.2. If Q) is acyclic, then K@ is a hereditary algebra.

Proof. Let us check that the radical of an indecomposable projective module is again
projective. Let x € Qp and consider the module P(x), as defined in Section 1.3. By
Lemma 1.3.6, if we see rad(P(x)) as a representation (M, ¢, ), then M, is isomorphic
to the subspace of K@ generated by paths of length at least one from x to y. Adapting
the proof of this lemma, we see that radQ(P(x)) has the same description, except that
we have to consider only paths of length at least two. Therefore, after constructing
the quotient, we are essentially left with paths of length exactly one and we get

top(rad(P(z))) = S(y1)™ @ - & S(yr)"",
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where y1,...,y, are the successors of z in () and n; is the number of arrows from x
to y;, for each 1 < i <r. Since P(y) is the projective cover of S(y) for all y € Qg, we
have a surjective homomorphism

Py)" @--- @ P(y,)" — rad(P(z)).

Again by Lemma 1.3.6, the dimension of each P(y;) is the number of paths in Q
starting at y;. On the other hand, the dimension of rad(P(x)) is the number of paths
of length at least one starting at x, and each of these paths is the concatenation of
some path starting at some y; and some arrow from x to y;. We conclude that the
two modules above have the same dimension, hence this surjective homomorphism is
an isomorphism. In particular, rad(P(z)) is projective, as desired. O

Remark. There is a sort of converse to the result above. If A is a basic finite-
dimensional algebra, we know from Theorem 1.2.1 that A = K@Q/I for some bound
quiver (@, I). If A is also hereditary, one can show that @ is acyclic and I = 0 (see
[2, Proposition 1.2.28]).

We also remark that K@ is hereditary even if () is not acyclic, but the proof above
does not work in this case. The idea for the general case is to explicitly construct a
“standard” projective resolution of length one for every module (see [13, p. 7]).

If A is an algebra of finite global dimension, then there is an interesting bilinear
form (—, —)4 : Ko(A) x Ko(A) — Z called the Euler form of A. It is defined by the

formula
[o@)

(IM], [N])a = 3(~1)" dimge Extiy (M, N)
i=0
for A-modules M and N. The sum above is always finite and goes up to i = gldim A.
It is well-defined over K((A) due to the long exact sequence of Ext associated to a
short exact sequence. If A = K@, then we have a hereditary algebra and the formula
simplifies to

([M], [N])a = dimg Hom4 (M, N) — dimg Ext} (M, N).

In this case, we can write the Euler form in terms of the data of Q). For this, we will
suppose Qo = {1,...,n} and identify Ky(K Q) with Z" via the dimension vector map.
We will also denote the Euler form just by (—, —)@, as the independence of K will be
apparent.

Lemma 2.1.3. If v,w € Z", then

(v,w)q = Zviwi - Z Us(a)Wi(a)-
=1

a€@Q1

Proof. We can write v and w as a linear combination of the dimension vectors of
the simple modules S(1),...,S(n), the coeflicients being the v;’s and the w;’s. By
bilinearity of the Euler form, we get

(v,w)g =Y vaw; - ([S@)), S
ij=1

= Z viwj - (dimg Hompgg(S(i), S(j)) — dimg Ext}(Q(S(i),S(j))).
ij=1
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By the description of the simple modules, it is immediate that the first dimension
above equals d;;, resulting in the first sum in the formula of the statement. On
the other hand, the other dimension is the number of arrows between the vertices
corresponding to S(i) and S(j) in the Ext-quiver of K@, which is @ itself (see the
remark after Definition 1.2.3). This accounts for the second sum above, finishing the
proof. O

The Tits form qq : Z" — Z of K(Q is the quadratic form associated to the Euler
form. Using the previous result, it is given by

qQ(v) = (v,v)q = va - Z Vs(a) Vi(a)
=1

aeQq

for v € Z™. Notice that it is independent of the orientation of the arrows in Q.

We will see that K@ has finite representation type exactly when gqg is positive
definite, that is, gg(v) > 0 for all nonzero v € Z". This will prove Gabriel’s theorem
due to the following result:

Theorem 2.1.4. If () is connected, then qg is positive definite if and only if Q) is a
Dynkin quiver.

The proof is completely combinatorial and it is done in Section A.1 of the appendix.

2.2 A tour through algebraic geometry

In this section, we will use some results from algebraic geometry to deduce properties
about quiver representations with the same dimension vector.

Write Qo = {1,...,n} and fix a nonzero vector d € Z" with nonnegative entries.
If M = (M;,¢q) is a representation of Q with dimension vector d, we can assume
that M; = K% for all 1 < i < n. What characterizes M among representations of
dimension vector d are the linear maps ¢, for a € Q1. This leads us to the following
definition.

Definition 2.2.1. The representation variety associated to the dimension vector
d is the set
V(d) = ][] Homg (K%, K%w).
aceQ1

For x € V(d), we have a representation M(x) = (M(z)i, ¢(z)s) defined by
M(z); = K% and ¢(2)q = 24 for all 1 <i < n and @ € Q1. Note that dim M (z) = d
and that every representation of () with dimension vector d is isomorphic to M (x) for
some = € V(d).

Let us consider the group

GL(d) == GL(dy) x --- x GL(d,),

where GL(d;) denotes the group of linear automorphisms of K di for 1 <4 <mn. It acts
on V(d) by conjugation: for g € GL(d) and x € V(d), we have

(g : x)a = gt:L‘ag;1

for every arrow o : s — t in (1.
If z,y € V(d) and there is g € GL(d) with y = g - 2, then the maps defining ¢
assemble into an isomorphism of representations M (x) — M (y). Every isomorphism
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from M (z) to M(y) appears in this way. Therefore, the orbits of this action are in
bijection with the isomorphism classes of representations of ) with dimension vector
d. If M is such a representation, we denote by Oj the associated orbit in V(d).

We will use some results from algebraic geometry to study this action. The repre-
sentation variety V(d) is naturally an algebraic variety isomorphic to the affine space

of dimension
Y dyaydi(a)-
ae@Q1

Furthermore, GL(d) is an affine algebraic group of dimension

a2
=1

which acts algebraically on V' (d). Note that gg(d) is the difference between these two
dimensions.

We will admit the following properties of actions of algebraic groups. A proof can
be found in [11, Proposition 2.1.7]|.

Lemma 2.2.2. Let X be an affine variety equipped with an algebraic action of an
affine algebraic group G. Let x € X and denote by O its orbit.

(1) O is locally closed, that is, O is open in its closure O.
(2) O\ O is a union of orbits of dimension strictly smaller than dim O.

(3) If G, denotes the stabilizer of z, then G is a closed subgroup of G and

dim O = dim G — dim G,..

Returning to our particular action, we obtain some corollaries.

Corollary 2.2.3. If M is a representation of () with dimension vector d, then
dim V(d) — dim Op; = dimg Endgq(M) — qo(d) = dimg Extjq(M, M).

Proof. The second equality follows from the definition of gg(d) as (d,d)q. For the
first equality, we remarked above that

qq(d) = dim GL(d) — dim V' (d),
so we have to prove that
dim Oy = dim GL(d) — dimg Endgq(M).

The vector space Endgg(M) can be seen as an algebraic variety isomorphic to an
affine space. In the Zariski topology, Autxg (M) is an open subset of the irreducible
space Endgq (M), hence, it is dense and its dimension is dimg Endgq(M). Finally, by
the description of the action of GL(d) on V' (d), note that Autxg(M) is isomorphic to
the stabilizer of a point in Oy, so the desired equality follows from Lemma 2.2.2. [

Corollary 2.2.4. If gqo(d) < 0, then there are infinitely many orbits in V(d). In
particular, if K@ is of finite representation type, then qg is positive definite.
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Proof. If M is a representation with dimension vector d, then Endxg(M) is nonzero.
By Corollary 2.2.3 and the hypothesis,

dimV(d) — dim Oy = dimg Endgg(M) — qo(d) > —qq(d) > 0.

This shows that every orbit in V'(d) has dimension strictly smaller than the dimension
of V(d). Since the dimension of a finite union of subsets in V' (d) equals the maximum
of the dimensions of these subsets, we conclude that V' (d) must contain infinitely many
orbits.

For the second part, assume K@ is of finite representation type and take a nonzero
v € Z"™. If v has nonnegative coordinates, we can consider it as a dimension vector
and it follows that V' (v) has finitely many orbits under the action of GL(v), so the
first part implies that gg(v) > 0. Now, if v has some negative coordinate, let v € Z"
be the vector whose coordinates are the absolute values of the coordinates of v. It is
not hard to see from the definition of ¢ that gg(v) > go(v'), and this last number is
positive by the same argument as before. We conclude that qg is positive definite. [

In view of Theorem 2.1.4, we have just proved one of the implications in Gabriel’s
theorem. We will need some more technical results in order to show the other impli-
cation. For what follows, we will say that a KQ-module M has no self-extensions
if Extjeq (M, M) = 0.

Corollary 2.2.5. If M is a representation of () with dimension vector d, then Oy,
is open in V(d) if and only if M has no self-extensions. In particular, there exists
at most one representation M of dimension vector d without self-extensions, up to
isomorphism.

Proof. By Corollary 2.2.3, the representation M has no self-extensions if and only if
dim V(d) = dim Oy;. The dimension of Oy, is the same as the dimension of its closure
Oy and, since V(d) is irreducible, proper closed subsets of V(d) are of a strictly lower
dimension. It follows that the desired condition is equivalent to Oy = V(d). If
this happens, then Oj; is open in V(d) since it is locally closed by Lemma 2.2.2.
Conversely, if Oy is an open subset of the irreducible space V (d), then Oy is dense
and we have Oy = V(d). This proves the first statement of the corollary.

For the second part, take two representations M and N as in the statement. By
the first part, Op; and Op are open in V' (d), hence dense. Therefore, these two orbits
intersect and so they must coincide, proving that M = N. O

Lemma 2.2.6. If there is a nonsplit short exact sequence of K @Q-modules

0 X Y Z » 0,

then Oxgqz C Oiy\ Oy.

Proof. Write X = (X;,0X), Y = (Yi,¢Y) and Z = (Z;, ¢%). For every 1 <i < n, we
can identify X; as a subspace of Y;. Extending a basis of each X; to a basis of Y; and
using these bases to represent the maps ¢} as matrices, we can find z € V(dim X),
y € V(dimY) and z € V(dim Z) such that X = M(z), Y = M(y) and Z = M(z),
and such that y, is of the form
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for & € Q1. For a nonzero A € K, consider the element g\ € GL(dimY") represented
by

for 1 < i <n, where I denotes the identity matrix of size k. We have

_1 To AWg
(9x “Y)a = 9tYags = 0

Zo

for every arrow « : s — ¢ in Q1. This constructs a line inside the orbit of y, except
that the point corresponding to A = 0 is missing. Thus, in the closure of this orbit,
we must have the element 3y’ € V(dimY’) given by

1 [ Ta 0
Yo = 0 Zoy
for « € Q. It is immediate that X @ Z = M (y') and, since Oy is a union of orbits
by Lemma 2.2.2, it follows that Oxgz C Oy.

It remains to prove that Y 2 X @ Z. Applying the functor Homgg(Z, —) to our
short exact sequence, we get the sequence

0 —— Homgo(Z, X) —— Homgo(Z,Y) —— Homko(Z, Z),

which is exact. Since the initial sequence does not split, the map ¥ — Z does not
admit a section and the map f above cannot be surjective. We obtain

dimg Homgg(Z,Y) = dimg Homgg(Z, X) + dimg im f
# dimg Homgg(Z, X) + dimg Homgg(Z, Z).

On the other hand,
Homgq(Z, X @ Z) = Homgq(Z, X) ® Homgq(Z, Z),
so we must have Y 22 X & Z, as needed. O

Corollary 2.2.7. If O); is an orbit in V(d) of maximal dimension and M = X @ Z,
then
Extro(X, Z) = Extyo(Z, X) = 0.

Proof. If Ext}(Q(Z, X) # 0, then there exists a nonsplit short exact sequence of KQ-
modules
0 X Y VA 0.

By Lemma 2.2.6, Oy is contained in Oy \ Oy. However, by Lemma 2.2.2, this last
set is a union of orbits of dimension strictly smaller than dim Oy, contradicting the
hypothesis on Op;. Thus, we must have Ext}(Q(Z ,X) = 0. A similar argument proves
that the other extension group is zero. O

2.3 From indecomposable modules to positive roots

Suppose that ) is a Dynkin quiver. By Theorem 2.1.4, qg is positive definite. The
goal of this section is to relate indecomposable K (Q-modules and positive roots of qq.
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Definition 2.3.1. A nonzero vector v € Z" is a root of qq if gg(v) = 1. It is positive
if its entries are all nonnegative.

In Section A.2, we discuss the relationship between this definition of root and the
one coming from the theory of root systems. The only property that we are going to
use is that the set of roots is finite.

We will prove that the dimension vector of an indecomposable module is a positive
root. In fact, we will obtain something slightly stronger: any indecomposable has no
self-extensions and is a brick, that is, its endomorphism algebra is one-dimensional.
If M is an indecomposable K Q-module with these properties, then indeed we have

qo(dim M) = dimg Endgq(M) — dimg Extiq(M, M) = 1.
We start with a technical lemma.

Lemma 2.3.2. If M is an indecomposable K ()-module that is not a brick, then M
has a submodule which is a brick with self-extensions.

Proof. It suffices to show that M has an indecomposable proper submodule N with
self-extensions. Having proved this property, if IV is not a brick, then we can iterate
the proof until we reach a submodule that is a brick.

Note that Endgg(M) has nonzero noninvertible elements. If this were not the
case, then Endgg(M) would be a finite-dimensional division algebra over K and,
since K is algebraically closed, it would be isomorphic to K, contradicting that M is
not a brick. Therefore, if § € Endgg(M) is a nonzero endomorphism whose image has
minimal dimension, then # is noninvertible. Since M is indecomposable, Endxq(M)
is in fact a local algebra and it follows that € is nilpotent. In this case, notice that
the dimension of the image of 2 is lower than that of 6, so we must have #2 = 0 and
im@ C ker . Given a decomposition

ker0 =X Xo®---0 X,

of ker 6 as a sum of indecomposable submodules, there exists 1 < j7 < r such that the
canonical projection 7; : ker # — X; does not annihilate im . We will now prove that
X has self-extensions and so we can set N = X to complete the proof.

Let a be the restriction of 7; to im¢. The composition

M %% imf 2 X; —— M

is an endomorphism of M with image im«. Since « is nonzero and dimg ima <
dimg im @, the minimality condition on 6 forces a to be injective. Hence, « fits into
a short exact sequence:

0 > imf —*— X Y

~
e

Applying the functor Homgg(—, X;) and using the long exact sequence with the Ext
functors, we get in particular a sequence

Extlo(X;, X;) —*— Extko(im0, X;) —— Ext% (Y, X;)

which is exact. But KQ is hereditary, so Ext%(Q(Y, X;) = 0 and o must be surjec-
tive. Thus, in order to show that X; has self-extensions, it is enough to show that
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Ext}{Q (im@, X;) # 0. For this purpose, consider the following diagram:

ker «—— M

g

X
After taking its pushout, we get a commutative diagram

0

0 —— kerd M > im 6 > 0
CI
0 X; - M > im 0 > 0

whose rows are exact!. If Ext}(Q(im 6, X;) vanished, the bottom row would split
and we would find h : M" — X; such that hg = idx;, but then hf would be a
retraction for the inclusion X; < M and X; would be a direct summand of M,
contradicting the indecomposability of M. Therefore, Ext}(Q(im 0,X;) # 0 and the
proof is finished. O

Corollary 2.3.3. If qq is positive definite and M is an indecomposable K @Q-module,
then M is a brick without self-extensions. In particular, dim M is a positive root.

Proof. If M is not a brick, then Lemma 2.3.2 gives us an indecomposable module NV
which is a brick with self-extensions. It follows that

q(dim N) = dimg Endgq(N) — dimg Exto(N, N) <0,

contradicting that gg is positive definite. Therefore, M must be a brick. Again by
the positive definiteness of g, we have

dimg Extjeq(M, M) = dimg Endg (M) — qo(dim M) = 1 — go(dim M) < 0
and we conclude that M has no self-extensions. O
We can now finish the proof of Gabriel’s theorem.

Theorem 2.3.4. Suppose @ is a Dynkin quiver. The map
M +—— dim M

defines a bijection between the set of isomorphism classes of indecomposable K Q-
modules and the set of positive roots of gg. Consequently, K@ is of finite representa-
tion type.

Proof. By Corollary 2.3.3, the dimension vector of an indecomposable module is in-
deed a positive root and the map above is well-defined.

If M and N are indecomposable modules, Corollary 2.3.3 says that M and N have
no self-extensions. If dim M = dim N, it follows from Corollary 2.2.5 that M = N.
This proves that the map of the statement is injective.

In order to prove the surjectivity, let d € Z" be a positive root of gg. Choose an
orbit Ops of maximal dimension in the representation variety V(d). If M = X & Z

See [1, Chapitre ITI, Théoréme 5.9] for a proof that the cokernel is preserved under the pushout.
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with X, Z # 0, Corollary 2.2.7 gives us Ext}(Q(X, Z) = Ext}(Q(Z, X) =0, so

gald) = {dim M, dim M)
= (dim X + dim Z, dim X + dim Z)¢
= qo(dim X) + go(dim Z) + dimg Hompg (X, Z) 4+ dimg Hompgg(Z, X)
>1+14040=2,

but this contradicts the fact that d is a root. Hence, M must be indecomposable and
it is mapped to d by the map from the statement. O
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Chapter 3

Auslander-Reiten theory

In the previous chapter, Gabriel’s theorem gave us the exact condition for a path
algebra K(Q to be of finite representation type: it has to come from a Dynkin quiver.
Moreover, Theorem 2.3.4 showed that the dimension vectors of the indecomposable
modules can be obtained combinatorially from the theory of root systems. Yet, even
with these strong results, we have only a blurred picture of the module category of
K(@Q. For example, we do not know exactly how the indecomposable modules look
like or how to find them, and we have no clue about the behavior of the morphisms
between them.

Our next step is to address these problems. For this purpose, we will develop a
bit of the so-called Auslander-Reiten theory, following mainly [2], [3, Chapter IV], 6]
and [8, Sections 4.12 and 4.13]. It is convenient to work in the more general setting
of an arbitrary finite-dimensional K-algebra, and we specialize to the case of path
algebras in most examples of Section 3.4 and in Section 3.5. At the end, we will see
an algorithm to find the Auslander-Reiten quiver of K@) when @ is a Dynkin quiver. It
allows us, in particular, to explicitly find the indecomposable modules, as we portray
in Example 3.4.1 for the case @ = As.

Remark. Throughout the chapter, A denotes a K-algebra of finite dimension and all
modules are in mod A. For the last three sections, we assume that K is algebraically
closed.

3.1 Irreducible morphisms and almost split sequences

In order to understand mod A, it is not enough to find all indecomposable modules.
We also need to study the morphisms between them. In this section, we will define
and study a class of morphisms analogous to that of indecomposable objects. They
will not be the building blocks of all morphisms in mod A in general, but they will
give us a good picture of this category.

Let ¢ : M — N be a homomorphism of A-modules. Given another module L and
maps ¢ : M — L and ¢’ : L — N, we always have two factorizations of :

) (v v

M—— N&L— N and M-—MaeL N.

The unspecified maps are the canonical projection and inclusion. These are trivial
factorizations. Recall that a surjective homomorphism can be seen as the canonical
projection from a direct sum if and only if it is a retraction, that is, it has a right
inverse. Dually, an injective homomorphism can be seen as the canonical inclusion
into a direct sum if and only if it is a section, that is, it has a left inverse. With
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this nomenclature, a factorization ¢ = g o f is trivial if either f is a section or g is a
retraction.

Definition 3.1.1. A homomorphism of A-modules ¢ : M — N is irreducible if it
is neither a section nor a retraction, and every factorization of ¢ is trivial.

Remark. Every homomorphism ¢ : M — N has a factorization
M ——» imp —— N.

If ¢ is irreducible, one of the two maps above must be an isomorphism. This shows
that irreducible morphisms are always injective or surjective (but not both).

Example 3.1.2. Let P be a nonsimple indecomposable projective module. We claim
that the inclusion ¢ : rad(P) < P is irreducible. First of all, ¢ is not a section
because rad(P) # 0 is not a direct summand of P. Now, if we write ¢ = gf with
fr:rad(P) - M and g : M — P, we have two cases. If g is surjective, then it is a
retraction because P is projective. Otherwise, the image of g is contained in rad(P)
since this is the unique maximal submodule of P. In this case, if ¢’ is the restriction
of g as a map from M to rad(P), we have ¢'f = id;aq(p), proving that f is a section.
Therefore, every factorization of ¢ is trivial.

Dually, if I is a nonsimple indecomposable injective module, the quotient map
I — I/soc(I) is also irreducible.

There is an interesting characterization of irreducible morphisms which will moti-
vate the appearance of almost split morphisms. It will also start relating irreducible
morphisms and indecomposable modules.

Lemma 3.1.3. Let 0 > L f

sequence of A-modules.

M—25 N » 0 be a nonsplit short exact

(1) f isirreducible if, and only if, for every morphism v : V.— N, there is vy : V —
M such that v = gvy or vg : M — V such that g = vvs.

(2) g isirreducible if, an only if, for every morphism w : L — U, thereis uy : M — U
such that u = uy f or ug : U — M such that f = usu.

Proof. We will just prove (1). The proof for (2) is dual.
( =) Suppose f is irreducible. Given a morphism v : V' — N, we can take its
pullback along g to get a commutative diagram

0o—sr-t g9,y 0
I A
0—sL—tysm 24N 0

with exact rows (see [1, Chapitre III, Théoréme 5.5]). The square on the left gives a
factorization of f, which must be trivial by hypothesis. If f’ is a section, then the first
row splits and ¢’ is a retraction. In this case, we can take v; = uh; with hy : V — E
a right inverse for ¢’. If u is a retraction, we can take vo = ¢g’hy with hy : M — F a
right inverse for u.

( <= ) Note that f is neither a section nor a retraction because the sequence is
nonsplit by hypothesis. Now, let f = fof1 be a factorization with f; : L — E and
fo o E— M. Assuming the condition stated above, let us show this factorization is
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trivial. By taking the cokernel ¢’ : E — V of the injective map f1, we arrive at a
commutative diagram:

0 Ll e Y v o0
D
0 L sy M —2 5 N > 0

Since the rows are exact, the square on the right is a pullback square (by the same
reference as before). By our assumption, there is v; : V. — M with v = guvy or
vo : M — V with g = vvy. In the first case, applying the universal property of the
pullback with vy : V. — M and idy : V — V, we get a right inverse for ¢/, so it is a
retraction and f; is a section. In the second case, a similar argument proves that fo
is a retraction. O

Corollary 3.1.4. The cokernel of an injective irreducible morphism is indecompos-
able. Dually, the kernel of a surjective irreducible morphism is indecomposable.

Proof. Let f : L — M be an injective irreducible morphism. Let N be its cokernel and
let g : M — N be the canonical map. These two maps fit into a nonsplit short exact
sequence because f is not a section. Write N = Ny @& Ny and denote by p; : Ny = N
(1 = 1,2) the canonical inclusions. If there is v; : M — N; with g = p,v;, then p; is
surjective and N; = N, so the direct sum decomposition is trivial. If v; and v9 do not
exist, then Lemma 3.1.3 guarantees the existence of v : N; — M with u; = gv} for
1=1,2. If m; : N — N; denotes the canonical projection, we have

g(v’lm + vém) = p1m1 + pome = idy = g is a retraction = f is a section,

a contradiction. This proves that N is indecomposable. The second statement of the
corollary is proved similarly. O

The property appearing in Lemma 3.1.3 is close to the one satisfied by almost split
morphisms, which we now define.

Definition 3.1.5. Let L, M and N be A-modules.

(1) A homomorphism f : L — M is called left almost split if it is not a section
and, for every homomorphism of A-modules u : L. — U that is not a section,
there exists v’ : M — U such that «'f = u, that is, the following triangle is
commutative:

L —— M

(2) A homomorphism ¢g : M — N is called right almost split if it is not a
retraction and, for every homomorphism of A-modules v : V' — N that is not
a retraction, there exists v’ : V' — M such that gv’ = v, that is, the following
triangle is commutative:
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Remark. Let f: L — M be a morphism in mod A. If f is a section with left inverse
h, then any v : L — U admits a lift ' : M — U as above: we just take v/ = uh. On
the other hand, if we can find a section u : L — U (with left inverse h’) for which there
exists a lift v’ : M — U, then the composition h'u is a left inverse for f and f is a
section. This explains the nomenclature above: if f is left almost split, then it is not a
split monomorphism, but it still satisfies the lifting property for all morphisms which
can possibly admit a lift. A similar remark applies for right almost split morphisms.

Lemma 3.1.6. If f : L — M is a left almost split morphism in mod A, then L is
indecomposable. Dually, if ¢ : M — N is a right almost split morphism in mod A,
then N is indecomposable.

Proof. 1t is similar to the proof of Corollary 3.1.4 (see |3, Chapter IV, Lemma 1.3]). O

Let f: L — M and f' : L — M’ be two left almost split morphisms in mod A
with the same domain. Both of them are not sections, so we can find morphisms
@: M — M and ¢ : M' — M commuting

LM JAIAN Vi

fl et and l 7
¥ ! x Y

M’ M.

Hence, we have f = (¢Y¢)f and f' = (pt)f’. If this implied that ¢ and @i are
automorphisms of M and M’, respectively, then ¢ and ¢ would be isomorphisms.
This leads us to another definition.

Definition 3.1.7. Let f: L -+ M and g : M — N be homomorphisms of A-modules.

(1) We say that f is left minimal if every endomorphism h : M — M with
hf = fis an automorphism. Dually, g is right minimal if every endomorphism
h: M — M with gh = g is an automorphism.

(2) If f is both left almost split and left minimal, we call it left minimal almost
split. Analogously, if ¢ is both right almost split and right minimal, we call it
right minimal almost split.

We get a uniqueness result for minimal almost split morphisms.

Lemma 3.1.8. If f : L -+ M and f' : L — M’ are left minimal almost split
morphisms in mod A with the same domain, then there exists an isomorphism ¢ :
M — M’ such that f' = ¢f. Dually, if g : M — N and ¢’ : M’ — N are right
minimal almost split morphisms in mod A with the same target, then there exists an
isomorphism v : M — M’ such that g = ¢'v.

We can now relate these concepts with irreducible morphisms.

Lemma 3.1.9. Every nonzero left or right minimal almost split morphism in mod A
is irreducible.

Proof. Let us prove the statement for a nonzero left minimal almost split morphism
f: L — M, the other case being dual.

By definition, f is not a section. Since L is indecomposable by Lemma 3.1.6, f is
not a retraction either, because otherwise M # 0 would be a direct summand of L and
f would have to be an isomorphism. Now, assume that f = fof; with f; : L — U and
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fo : U — M. Suppose that f; is not a section and let us show that fs is a retraction.
By the definition of almost split morphism, we have a lift

L1 m

.
.
f -7
S
g

U.

Thus, f = fofi = fouf and, by left minimality, fou is an automorphism. Conse-
quently, fo is a retraction, as claimed. ]

Theorem 3.1.10. The following assertions hold:

(1) Let f : L — M be a left minimal almost split morphism in mod A. Then, a
morphism f’ : L — M’ is irreducible if, and only if, M’ # 0 and there is a
morphism f” : L — M" such that M = M’ @ M" and

(j:,i) L — M oM

is left minimal almost split.

(2) Let g : M — N be a right minimal almost split morphism in mod A. Then,
a morphism ¢ : M’ — N is irreducible if, and only if, M’ # 0 and there is a
morphism ¢” : M"” — N such that M = M' & M" and

(¢ ¢"):MaoM — N

is right minimal almost split.

Proof. As before, we will just prove (1). Let f' : L — M’ be a homomorphism of
A-modules.

( = ) Suppose [’ is irreducible. Since f’ is not a retraction, M’ # 0. As f’ is
not a section either, we can use that f is left almost split to get h : M — M’ such
that f’ = hf. It follows that h is a retraction because f’ is irreducible and f is not a
section. Therefore, M" := ker h is a direct summand of M and, if w: M — M" is the
canonical projection associated to some direct sum decomposition, the map

(Z) M — M' & M”

is an isomorphism. The composition of this isomorphism with f is again left minimal
almost split and, since f’ = hf, it has the form as in the statement.

(<) Let f” : L — M" be as in the statement and let us prove that f’ is
irreducible. Firstly, f’ cannot be a section because the existence of a left inverse h

would give us
f/
(h’ O) (f”) =idg,

contradicting that the map from the statement is not a section. Since M’ # 0 and L
is indecomposable (Lemma 3.1.6), f’ cannot be a retraction either.

Assume now that f’ factorizes as f' = fofy with f1: L — U and fo : U — M'. If
f1 is not a section, there is (W' h") : M’ & M" — U such that

(h/ h//) (;:/) — fl
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because this last matrix represents a left almost split morphism by hypothesis. We

<f2h/ fgh”) (f/> _ <f20(h/fl+h/lfl/)> _ <f2f1) _ (f/>
0 idM// fl/ f// f/l f// )

so left minimality implies that the square matrix above is invertible. Thus, foh' has
to be an automorphism and f5 is a retraction. This proves that f’ is irreducible. [

Let L be an indecomposable module. We will see in Section 3.2 that there exists a
left minimal almost split morphism L — M, which is unique up to some isomorphism
by Lemma 3.1.8. By Theorem 3.1.10, any nontrivial direct sum decomposition of M
yields an irreducible morphism going out of L, and every such morphism appears in
this way. We have a similar characterization of irreducible morphisms arriving at a
given indecomposable module. Hence, if we know how to find minimal almost split
morphisms, we know how to compute irreducible morphisms between indecomposable
modules.

It turns out that nearly all minimal almost split morphisms come from a special
type of short exact sequence characterized by the following result:

Theorem 3.1.11. Let 0 y L ! M —25 N 0 be a short exact se-
quence of A-modules. The following assertions are equivalent:

1) f and g are irreducible.

2) f is left minimal almost split.

4

(1)

(2)

(3) g is right minimal almost split.

(4) f is left almost split and N is indecomposable.
()

5) ¢ is right almost split and L is indecomposable.

Definition 3.1.12. A short exact sequence 0 L ! sy M —2 N 0
is an almost split sequence if one (and hence all) of the assertions of Theorem
3.1.11 is satisfied.

In order to prove the equivalence above, we need another lemma.

Lemma 3.1.13. Let

0—sL-—tsmm 2N 0
TR
0 s L M2 N 0

be a commutative diagram in mod A whose rows are nonsplit short exact sequences.

(1) If L is indecomposable and w is an automorphism, then u and hence v are
automorphisms.

(2) If N is indecomposable and w is an automorphism, then w and hence v are
automorphisms.

Proof. We will only prove (1). Since L is indecomposable, End 4(L) is a local algebra.
Thus, if w is not invertible, it is nilpotent. Let m > 1 be such that u" = 0. We
have v™f = fu™ = 0, so v factors through the cokernel of f. Hence, there is
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h : N — M such that v = hg. We have ghg = gv™ = w™g and, because g is
an epimorphism, gh = w™. But w is an automorphism, so this implies that g is a
retraction, contradicting that the rows are not split. We conclude that u must be an
automorphism and, by the five lemma, v as well. O

Proof of Theorem 5.1.11. (1) = (2). If h : M — M satisfies hf = f, the irre-
ducibility of f implies that h is a retraction and, in particular, surjective. Since M
is finite-dimensional, this implies that h is an isomorphism. This shows that f is left
minimal.

Now, let v : L — U be a map that is not a section. Let us find a lift for v along
f as in the definition of left almost split morphisms. Note that the composition of u
with the projection to some direct summand is not a section either, so we may suppose
that U is indecomposable. Since g is irreducible, Lemma 3.1.3 gives u; : M — U with
u=wuif orug: U — M with f = uou. In the first case, u; is the desired lift. In the
second case, by the irreducibility of f and by the fact that v is not a section, we have
that ug is a retraction. Since U is indecomposable, us is in fact an isomorphism and
we can take uy 1 as the lift. This proves that f is left almost split.

(2) = (3). Let h : M — M be a morphism with gh = g. We have a commutative
diagram:

f

0 L y M —2— N > 0
vl
0 Lt s, N ' 0

The morphism h’ comes from the functoriality of taking kernels. Since f is left almost
split, L is indecomposable by Lemma 3.1.6, so Lemma 3.1.13 implies that h is an
automorphism. Therefore, g is right minimal.

Let us check that g is also right almost split. Notice that g is not a retraction
because f is not a section. Let v : V — N be a map that is not a retraction. Taking
the pullback of v along g, we get a commutative diagram

0 L—YsU—*sv y 0
R
0 L f>M . N > 0

with exact rows. If k is a retraction, the composition of some right inverse of k and h
gives the desired lift of v along g. We will prove that this is the case by contradiction.
Suppose that k is not a retraction. Thus, the first row above is not split and u is not
a section. Since f is left almost split, there is v’ : M — U such that v = u/f. This
fits into a commutative diagram:

0 LM< N —0
I |

0 J FENY § S N Vi y 0
|

LM 25 N > 0

0 L
The morphism v’ comes from the functoriality of taking cokernels. Now, because f is
left minimal almost split, it is irreducible by Lemma 3.1.9 and, thus, N is indecom-
posable by Corollary 3.1.4. It follows from Lemma 3.1.13 that vv’ is an automorphism
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and so v is a retraction, contradicting the initial hypothesis on v.

A dual argument proves that (3) implies (2), hence these two assertions are equiv-
alent. Lemma 3.1.9 implies that (2) and (3) together imply (1). We deduce that (1),
(2) and (3) are equivalent. Observe that, while proving that (2) implies (3), we only
used that f was left minimal to conclude that N was indecomposable, so the same
proof shows that (4) implies (3) and, similarly, (5) implies (2). Finally, Lemma 3.1.6
gives that (2) and (3) together imply (4) and (5). This completes the proof. O

3.2 Existence of almost split morphisms

In this section, we show how to find minimal almost split morphisms going in or out
of a given indecomposable module.
Let N be an indecomposable A-module. If there exists an almost split sequence

0 L sy M —2 5 N > 0,

then g is a right minimal almost split morphism arriving at N. However, such sequence
is necessarily nonsplit, so N cannot be projective. Dually, we can only use almost split
sequences to find a left minimal almost split morphism going out of an indecomposable
module L if L is not injective. Fortunately, the projective and the injective cases are
much easier to deal with.

Proposition 3.2.1. If P is an indecomposable projective A-module, then the right
minimal almost split morphism with target P is the inclusion rad(P) < P. Dually, if 1
is an indecomposable injective A-module, then the left minimal almost split morphism
with domain I is the quotient map I — I/soc([).

By Lemma 3.1.8, left and right minimal almost split morphisms are determined
by their domain and their target, respectively. Thus, it makes sense to say “the” right
minimal almost split morphism with target P and “the” left minimal almost split
morphism with target I.

Proof. Let g : rad(P) — P be the inclusion. Since g is a monomorphism, it is right
minimal. Let us prove that it is right almost split. Firstly, g cannot be a retraction as
it is not surjective. Now, if v : V' — P is not a retraction, then it cannot be surjective
because P is projective. Therefore, the image of v is contained in rad(P), which is
the unique maximal submodule of P, so v factors through g, as needed.

The second statement is proved dually. O

Let N be a nonprojective indecomposable A-module. Our goal is to find an almost
split sequence in which N is the last term. By the uniqueness of minimal almost split
morphisms, the first term L of this sequence should be a noninjective indecomposable
module depending only on N. If we can do this for every IV, we get a bijection between
the sets of isomorphism classes of nonprojective indecomposables and noninjective
indecomposables. With this in mind, our approach will be to first establish this
correspondence, and we will do this functorially as we did for the Nakayama functor
in Section 1.4.

We introduce two new categories. For two A-modules M and N, denote by
P(M, N) the subset of Hom4 (M, N) consisting of all morphisms that factor through
a projective module. It is not difficult to see that the assignment (M, N) — P(M, N)
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defines an ideal P of mod A, that is, each P(M, N) is a subspace of Hom4 (M, N)
and, for morphisms g : L — M and h: N — P, we have

fgeP(L,N) and hf e P(M,P)

for all f € P(M,N). The projectively stable category mod A is the quotient of
mod A by the ideal P. In other words, the objects of mod A and mod A coincide,
but the space of morphisms between two modules M and N in mod A is given by the
quotient space
Homu4 (M, N)

P(M,N)

Similarly, we define the subset Z(M, N) of Hom (M, N) consisting of all morphisms
that factor through an injective module. We get an ideal Z and the quotient mod A =
(mod A)/Z is the injectively stable category. The space of morphisms between
two modules M and N in mod A is

Hom 4 (M, N) =

Homy (M, N)

Homa (M, N) = TOLN)

For more details on these constructions, see |2, Section III.1.1] and [6, Chapter 4,
Section 1]. The idea to keep in mind is that we are forcing projective or injective
modules to be isomorphic to zero, so the stable categories encode information about
nonprojective and noninjective modules.

Proposition 3.2.2. There exists an equivalence 7 : mod A — mod A.

Proof. We sketch a proof based on [2, Section III.1.2 and Corollary I11.1.6].

Let mp A be the category of morphisms of proj A, that is, the objects in mp A are
morphisms in proj A and the morphisms in mp A are commutative squares in proj A.
By taking cokernels and applying the quotient functor mod A — mod A, we get a
functor F' : mp A — mod A. Since every A-module has a projective presentation, F
is essentially surjective, and it is not hard to see that it is also full. Therefore, if Kg
denotes the kernel of F', we get an induced equivalence (mp A)/Kpr — mod A. In the
same fashion, we define the category mi A of morphisms of inj A. By taking kernels, we
get a functor G : mi A — mod A which induces an equivalence (mi A)/Kg — mod A.

Recall from Section 1.4 that the Nakayama functor v is an equivalence from proj A
to inj A. It upgrades to an equivalence between the categories of morphisms mp A
and mi A. One can show that this equivalence takes the ideal g to the ideal K¢, so
it descends to an equivalence between the corresponding quotients. In this way, we
get the equivalence 7 as the composition

mod A —— (mp A)/Kr —— (mi A)/Ks —— mod A.

The first functor is a quasi-inverse of the first equivalence in the previous paragraph,
and it can be defined by choosing a projective presentation for every A-module. Thus,
if M is an A-module, then 7M is obtained by considering the chosen projective pre-
sentation of M, applying v and taking the kernel. Analogously, we can define a quasi-
inverse 77! for 7 such that, for a given A-module, 77'M is obtained by choosing an
injective presentation of M, applying »~! and taking the cokernel. O

Definition 3.2.3. The equivalences 7 : mod A — mod A and 7! : mod A — mod A
from Proposition 3.2.2 and its proof are called the Auslander-Reiten translations.
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Remark. In order to compute 7M for some module M, we will always choose a
minimal projective presentation (see |3, Section I1.5]). By the uniqueness of such
presentation, 7M is a module defined up to isomorphism in mod A. However, we
cannot see 7 as a functor from mod A to itself because there is no canonical way of
lifting morphisms from the stable category. A similar remark applies to 7.
Remark. As we did with the Nakayama functor, we can write 7 and 7! as the
composition of two dualities. If D denotes the K-duality functor, it interchanges
projective and injective modules, inducing a duality between mod A and mod A°P.
Hence, we have a duality

Tr := D7 : mod A — mod A°P

called the transposition functor. Since the functor D already appears in the defini-
tion of v, it “cancels” after we apply D again, thus, we can see Tr in the following way:
for an A-module M, Tr M is calculated by choosing a minimal projective presentation
of M, applying the A-duality functor (—)! and taking the cokernel. A quasi-inverse of
Tr is computed in the same way and we also denote it by Tr. With these conventions,
we have

r=DTr and 7 '=TrD.
We prove some important properties of the Auslander-Reiten translations.

Lemma 3.2.4. Let M be an indecomposable A-module and choose a minimal pro-

jective presentation P L eV} 0.
(1) We have an exact sequence

0 y M vPp s upy s yM —— 0.

Moreover, if M is not projective, then the first three terms form a minimal
injective presentation of 7M.

(2) 7M = 0 if and only if M is projective.
(3) M has no nonzero injective summands.

(4) If M is nonprojective, then 7M is an indecomposable noninjective module and
-1 ~
T TM = M.

(5) 7 induces a bijection between the isomorphism classes of nonprojective and
noninjective indecomposable modules.

A dual statement holds for 771
Proof. (1). Since the Nakayama functor is right exact, the sequence of the statement
is exact on vFPy and v M. In turn, 7M is by definition the kernel of the middle map,
so the sequence also becomes exact on 7M and vP; if the map 7M — vP; is the
inclusion.

For the second part, take a minimal injective presentation

0 y TM L —%5 1.
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By [1, Chapitre X, Lemme 1.11], there are morphisms f; and fp making the following
diagram commute:

0 —— M s I —L 5 I
H fll fol
0 —— 7M vP, 25 uP,.

Furthermore, f1 and fj are sections and we can find left inverses f] and f{), respectively,
such that d o f{ = f} ovp. Our goal is to prove that f; and fp are isomorphisms or,
equivalently, that ker f{ and ker f) are zero. By the commutativity relations, note
that vp sends im f into im fy and ker f{ into ker f). But vP; = im f; @ ker f/ for
1= 20,1, so we can write vp = ¢ @ 1) for certain morphisms

p:im f; —im fy and 4 : ker f{ — ker f{.

Applying the inverse Nakayama functor v~! to vp and identifying v~'vP; with P; for
i =0, 1, we can write p = v~ p@r 1. Since M is indecomposable and is the cokernel
of p, it follows that M is isomorphic to the cokernel of v~1¢ or of v~ 11). This gives us a
new projective presentation of M whose terms have dimension at most the dimension
of the terms of our original presentation. By minimality, these two presentations must
be isomorphic. This can only happen if im f; = im fy = 0 or ker f{ = ker f} = 0.
Now, if we have the first case, then Iy = [} = 0 and 7M = 0, contradicting (2) and
that M is not projective. Therefore, assuming (2), this concludes the proof of (1).

(2). If M is projective, then Py = M and P = 0, so we get 7M = 0 by the exact
sequence in (1). Conversely, if 7M = 0, then vp is injective. Since v P; is an injective
module, vp must be a section. Applying v, it follows that p is a section, so ¢ is a
retraction and M is a direct summand of Fy. Thus, M is projective.

(3). We may suppose that M is not projective by (2), so we can consider the
minimal injective presentation of 7M given in (1). If 7M has an injective summand
I, then [ is also a direct summand of vP;. By exactness of the sequence in (1), vp
sends I to zero. Applying »~!, we find a direct summand of P; isomorphic to v~
which is sent to zero by p. For the projective presentation in the statement to be
minimal, we must have v~ = 0 and, consequently, I = 0.

(4). Suppose M is nonprojective. By (2) and (3), 7M is nonzero and noninjective.
Using the minimal injective resolution from (1), we see that 7=!17M is isomorphic to
the cokernel v~!(vp). Hence, 7~ 17 M is isomorphic to the cokernel of p, which is M.

To conclude, let us prove that 7M is indecomposable. If not, then 7M = Ni @ Ny
for nonzero submodules N; and Ny. By (3), N; and N3 are not injective. Thus,
the dual of (2) implies that 771Ny and 77 !Ny are also nonzero. But we have M =
7717 M = 771N, @ 7' Ny, contradicting that M is indecomposable.

(5). It follows from (4) and its dual version. O

The most important result about the Auslander-Reiten translations that we are
going to use are the Auslander-Reiten formulas given by the theorem below.

Theorem 3.2.5. If M and N are A-modules, then there are isomorphisms
Extl (M,7N) = DHom (N, M) and Exth(r—'M,N)= DHomu(N, M)

which are functorial in both variables.
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Remark. Since Extl(P,—) = 0 = Ext!(—,I) for P projective and I injective, we
can view Ext} as a functor from

(mod A)°P? x mod A

to the category of K-vector spaces. In this way, it makes sense to say that the
isomorphisms above are “functorial”.

Proof. See |2, Theorem I11.2.4]. We also refer the reader to |25] for a proof where it
could be easier to check the functoriality. O

We are now ready to construct almost split sequences. Let N be a nonprojective
indecomposable module. We will search for an almost split sequence of the form

0 » TN > M N > 0.

This short exact sequence should correspond to an element in Ext}éx(N ,7IN), so it will
be helpful to characterize almost split morphisms in terms of the Ext functor.

Lemma 3.2.6. Let 0 > L M—25 N > 0 be a nonsplit short exact
sequence of A-modules. Then g is right almost split if, and only if, for everyv : V. — N
which is not a retraction, the element & € Ext!, (V, L) corresponding to this short exact
sequence is in the kernel of the morphism

Exth (v, L) : Exty (N, L) — Ext(V, L).

Proof. Tt suffices to check that £ is in the kernel of the map above if and only if v
factors through g. Using the naturality of the long exact sequence of Ext obtained
after applying Hom 4 (N, —) and Hom4(V, —) to the short exact sequence above, we
have in particular a commutative diagram

Hom (N, M) —— Homu (N, N) —2— Ext} (N, L)
®» \LExth(v,L)

Homu(V, M) —%— Homu(V, N) —2— Ext4(V, L)

with exact rows. The maps d; and ¢ take idy to & and v, respectively!. Hence,
Ext}éx(v,L) sends £ to zero if and only if 05 sends v to zero. By exactness, this
happens if and only if v is in the image of % or, in other words, if v factors through
g, as needed. O

Now we can use the Auslander-Reiten formulas to identify Extl (N,7N) with
DHom 4(N,N) = DEnd,(N). Continuing with the assumption that N is a non-
projective indecomposable module, this vector space is nonzero. Moreover, it has a
natural structure of bimodule over the algebra End4(N) induced by composition.

Lemma 3.2.7. With the hypotheses above, Extil(N, 7N) has a simple socle when
regarded as a left or a right End4(N)-module.

Proof. By taking the dual space, it is equivalent to show that the top of End 4 (V) as
a left or a right End 4(/V)-module is simple. In order to do so, let us first prove that
P(N,N) is contained in the radical of the algebra End4(NN). Since N is indecom-
posable, End4(N) is a local algebra, so it is enough to check that an invertible map

Tt is essentially by definition that &; takes idx to & (see [1, Chapitre IX, Section 5]).
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N — N cannot factor through a projective module. Indeed, if it factored through a
projective module P, we would find a retraction P — N, thus N would be a direct
summand of P, contradicting the fact that N is nonprojective.

The End4(N)-module End 4(M) is the quotient of End4(NN) by its submodule
P(N, N). By the previous paragraph, its radical is isomorphic to the quotient

End(N)
rad(End4(N))’

which is a division algebra because End 4 (V) is local. Any nonzero element is invertible
and generates such quotient, hence it is simple if regarded either as a left or a right
End 4(N)-module. O

We finish this section by proving our previous claims.

Proposition 3.2.8. (1) If N is a nonprojective indecomposable A-module, then
there exists an almost split sequence of the form

0 —— 7N M > N

~
e

(2) If L is a noninjective indecomposable A-module, then there exists an almost
split sequence of the form

0 y L y M 7L —— 0.

Proof. If L is noninjective indecomposable, then 7L is nonprojective indecompos-
able and 7(77!L) = L by the dual of Lemma 3.2.4. Hence, (2) will follow after we
prove (1).

Take a nonprojective indecomposable module N. According to Lemma 3.2.7, we
can choose a nonzero element ¢ of the socle of the left End 4(N)-module ExtY (N, 7N).
It corresponds to a nonsplit short exact sequence

0 N M -2 N 0.

Since 7N is indecomposable by Lemma 3.2.4, Theorem 3.1.11 tells us that we have to
check that g is right almost split to get an almost split sequence. To prove this, we
will use Lemma 3.2.6.

Let v : V — N be a morphism of A-modules which is not a retraction. We claim
that the residual class of idy is not in the image of the map

Hom 4(N,v) : Hom4 (N, V) — Hom 4 (N, N) = End 4(N).

If it were, then we would have vu —idy € P(N, N) for some map u: N — V. Using
the proof of Lemma 3.2.7, vu — idx would be in the radical of End4(N). Since idy
is not in the radical, vu could not be either, hence it would have to be invertible and
v would be a retraction, a contradiction. Therefore, the map above is not surjective.
By taking its dual and applying the Auslander-Reiten formula, we get that the map

Ext!(v, 7N) : ExtY}(N,7N) — Ext! (V,7N)

is not injective. It is not hard to see that Hom 4(V,v) is a homomorphism of right
End 4(N)-modules, so this last map is a homomorphism of left End4 (N )-modules.
Because the socle of Ext! (N, 7N) is simple by Lemma 3.2.7, it must be sent to zero.
In particular, Extl (v, 7N) sends £ to zero, as desired. O
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3.3 The Auslander-Reiten quiver

Before giving examples of almost split sequences in concrete cases, we will first in-
troduce the Auslander-Reiten quiver of A. It succinctly describes the irreducible
morphisms between indecomposable A-modules.

The only ingredient missing for this definition is a way of measuring the “number”
of irreducible morphisms between two given modules. This will be achieved by con-
structing a vector space which encodes such information. In order to do so, we need
to know what is the radical of mod A.

Definition 3.3.1. Let M and N be A-modules. The space of radical morphisms
radg (M, N) between M and N is the subset of Homy (M, N) of homomorphisms
f + M — N such that, for every indecomposable summand M’ of M and every
indecomposable summand N’ of N, the composition

!

M’ < M N N’

is not an isomorphism, where the unspecified maps are the canonical inclusion and
projection. This defines an ideal rad 4 of mod A called the radical of mod A.

For some motivation and for more details on the radical, see |2, Section II.1].

Remark. If M is indecomposable, note that a homomorphism M — N is radical if
and only if it is not a section. Similarly, if N is indecomposable, a map M — N is
radical if and only if it is not a retraction. If both M and N are indecomposable,
rad (M, N) consists of the nonisomorphisms from M to N.

For any ideal in mod A, we can consider its powers. In particular, for A-modules M
and N, we define rad? (M, N) as the set of morphisms M — N which can be written
as the composition of two radical morphisms. This gives us a new characterization of
irreducible morphisms.

Lemma 3.3.2. Let f : M — N be a homomorphism between two indecomposable
A-modules. Then f is irreducible if, and only if,

f €rada(M,N)\ rad} (M, N).

Proof. Since M and N are indecomposable, f is radical if and only if it is a noniso-
morphism, which in this case is equivalent to saying that f is neither a section nor a
retraction.

On the other hand, f € rad%(M,N) if and only if there is a module L and
radical morphisms g : M — L and h : L — N such that f = hg. Because of the
indecomposability of M and N, saying that g and h are radical is the same as saying
that ¢ is not a section and & is not a retraction. Thus, f € rad% (M, N) if and only if
f admits a nontrivial factorization.

The lemma then follows from the definition of an irreducible morphism. O

Definition 3.3.3. Let M and N be indecomposable A-modules. The space of irre-
ducible morphisms between M and N is the quotient space

rada (M, N)

Trrq(M, N) = 2CAS )
Al ) rad% (M, N)

By the previous lemma, the dimension of this space quantifies in some sense the
“number” of irreducible maps from M to N. We can now give the main definition of
this section.
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Definition 3.3.4. Let A be a finite-dimensional K-algebra. Its Auslander-Reiten
quiver (or AR-quiver for short) is the quiver I'(mod A) defined as follows:

e The vertices of I'(mod A) are the isomorphism classes of indecomposable A-
modules.

e The number of arrows from M to N is the dimension of Irr4 (M, N) over K.

Remark. All the notions appearing above depend only on mod A. That is the reason
for using the notation I'(mod A). A similar definition can be used to define the AR-
quiver of any K-linear Krull-Schmidt category. For example, in Chapter 4, we will
implicitly deal with the AR-quiver of a bounded derived category.

Just as almost split morphisms help us find irreducible morphisms, they also can
be used to compute the dimension of Irr4 (M, N).

Theorem 3.3.5. Suppose K is an algebraically closed field. Let L and N be inde-
composable A-modules.

(1) Let f: L — M be the left minimal almost split morphism with domain L. If
M = @le M." with the M; indecomposable and pairwise nonisomorphic, then

dimg Irr4 (L, M;) = n;

for all 1 <14 <t, and Irr4(L, M’) # 0 for some indecomposable M’ if and only
if M’ = M, for some ;.

(2) Let g : M — N be the right minimal almost split morphism with target N. If
M = @2:1 M"" with the M; indecomposable and pairwise nonisomorphic, then

dimg Irr 4 (M;, N) = n;

for all 1 <i <t, and Irr4(M’, N) # 0 for some indecomposable M’ if and only
if M’ = M, for some ;.

Proof. We will only prove (1). The other item is analogous.

Note that Irr4(L, M") # 0 if and only if there is an irreducible morphism from L
to M. Thus, the second part of the statement follows from Theorem 3.1.10.

For the first part, denote by Mji,..., Mj,, the copies of M; appearing in the
decomposition of M. Let f;r : L — M, be the components of f, with 1 < 5 < ¢
and 1 < k < nj. Each of these morphisms is irreducible by Theorem 3.1.10 and
hence radical by Lemma 3.3.2. For 1 < ¢ < ¢, we will show that the residual classes
of fi1,..., fin; form a basis of the quotient Irrs(L, M;) = rada(L, Mi)/rad%(L, M;).
This will finish the proof.

Initially, let us check that these elements are linearly independent. Suppose that
there are Aq,...,\,, € K such that

vi= Z A fir € rad® (L, M;).
k=1

This map is the composition of the morphisms f; : L — M," and u : M;"" — M; given
by the matrices
fin
fi= and U:()\l‘idMi o Ap
fini

“idag,) -

i
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Observe that f; is irreducible by Theorem 3.1.10. If some A\ # 0, it is easy to see
that u is a retraction. As v = uf;, we can use the direct sum decomposition in
M"" induced by the retraction u to see v as a component of f; (up to composing
with an isomorphism). Hence, Theorem 3.1.10 implies that v is irreducible, but this
contradicts Lemma 3.3.2 since v € rad% (L, M;). Therefore, A\, = 0 for all 1 < k < n;,
as desired.

Now, let us prove that the residual classes fi1, ..., fin, generate Irr (L, M;). Let
h € rada(L,M;). Since h is not a section and f is left almost split, there exists
u: M — M; such that h = uf. Let uj, : Mj;, — M; denote the components of u,
with 1 < j <tand 1 <k < n;. If j # 4, then Mj, 2 M; and uj, cannot be an
isomorphism, so it is radical. In this case, uji fji; € rad? (L, M;) because fjk is also
radical. Hence, in the quotient Irr4(L, M;), we get

nj n;
h=uf =" upfixt=>_ wirfir-
=1 k=1 k=1

For 1 < k < ny, uj is an element of the local algebra End4(M;). Since K is al-
gebraically closed, the quotient of End4(M;) by its radical is one-dimensional, so
we can write u;, = A - idpg, + ), for some Ay € K and some noninvertible map
ufy, € rada(M;, M;). Tt follows that

k=1 k=1

concluding the proof. O

Remark. It is still possible to work when K is not algebraically closed. In this
case, we see Irr4 (M, N) as a bimodule over the top of the local algebras End 4 (M )°P
and End4(N). These are division algebras and we can compute the dimension of
Irr4 (M, N) over them. However, we now have two dimensions which might be different
and it is convenient to use another definition for the AR-quiver of A. The reader is
referred to [6, Chapter VII, Section 1] for more details.

Remark. From now on, K is always algebraically closed so that we can apply
Theorem 3.3.5.

Corollary 3.3.6. Suppose
t
OHLH@MZL"*)N*)O

i=1

is an almost split sequence, where the M; are indecomposable and pairwise noniso-
morphic. Then, for each 1 <1i < n, we have

dimg Irr 4 (L, M;) = n; = dimg Irr g (M;, N).
Proof. This follows immediately from Theorem 3.3.5. O

One consequence of these results is that the AR-quiver of A has a very particular
shape. If N is a nonprojective indecomposable module, we have the following mesh
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inside I'(mod A):

My
a : > fu
a1, Bin,
TN - N
ey Biny
o : "B
M,
The modules My, ..., M; are the indecomposable modules appearing in the middle

term of the almost split sequence with 7N and N. The multiplicity of M; is n;. We
have listed above all arrows leaving 7N and all arrows arriving at V. On the other
hand, there might be other arrows in I'(mod A) going in or out of the modules M;.
The dashed line is not part of I'(mod A) but it is there to represent that 7N and N
are Auslander-Reiten translates.

If N is an indecomposable projective module, we still have a “half-mesh” consisting
of the right part of the picture. In this case, we have rad(IN) = @E:l M" since the
inclusion rad(IN) < N is the right minimal almost split morphism with target N.
Dually, we also get a “half-mesh” starting from an indecomposable injective module.

We conclude the section with a result describing the “corners” of I'(mod A). It
will provide the starting point of an algorithm to calculate the AR-quiver in some
particular cases.

Proposition 3.3.7. Let S be an indecomposable A-module.
(1) S has no predecessors in I'(mod A) if, and only if, S is simple and projective.

(2) If S is simple, projective and noninjective, then the middle terms of the mesh
defined by S and 7718 are all projective. Moreover, they are exactly the inde-
composable projective modules P such that S is a direct summand of rad(P).

(3) In the previous item, the number of arrows from S to P in I'(mod A) is the
multiplicity of S as a direct summand of rad(P).

The dual statement also holds.

Proof. (1). If S is projective, then the predecessors of S in I'(mod A) are the direct
summands of rad(S) (Proposition 3.2.1 and Theorem 3.3.5). Thus, in this case, S
has no predecessors if and only if rad(S) = 0, which is equivalent to saying that S is
simple. If S is not projective, then the mesh defined by 75 and S provides S with at
least one predecessor.

(2) and (3). Let P be a middle term of the mesh defined by S and 7715. In
particular, there is an irreducible map from S to P. If P were not projective, we
could form a mesh with extremes 7P and P. One of the middle terms would be S
and so 7P would be a predecessor of S, contradicting (1). Therefore, P is projective.
Since the inclusion rad(P) < P is the right minimal almost split morphism with
target P, S must be a direct summand of rad(P) by Theorem 3.3.5. Furthermore, the
same theorem says that dimg Irr4(S, P) is the multiplicity of S as a direct summand
of rad(P). Conversely, a similar argument shows that, if P’ is an indecomposable
projective module such that S is a direct summand of rad(P’), then P’ is a successor
of S in I'(mod A). O
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3.4 Examples

We are finally ready to compute some examples! As we did in the previous section,
we assume that the base field K is algebraically closed.

Example 3.4.1. Suppose A = K@, where @Q is the Dynkin diagram Aj with the
following orientation:

1— 2 —— 3.

From Lemmas 1.3.6 and 1.3.7, we can find the projective and the injective indecom-
posable modules:

Pl)= K 4 Kk 4y g = 1(3),
P2)= 0 — K 4 K,

P(3) =5(3),

1(1) = 5(1),

I2)= K4 K ——0

Note that P(3) is the radical of P(2), which in turn is the radical of P(1). Thus, the
full subquiver of I'(mod A) with projective vertices is

The arrow from P(3) to P(2) represents the inclusion. Since P(3) is simple and
projective, Proposition 3.3.7 says that P(2) is the only successor of P(3) in I'(mod A).
Hence, by Theorems 3.1.10 and 3.3.5, the irreducible morphism P(3) — P(2) must
be the left minimal almost split morphism with source P(3). Taking the cokernel, we
get an almost split sequence:

0 —— P(3) —— P(2) —/— S(2)

~
e

It follows that 771 P(3) = S(2) and we get a mesh in the AR-quiver:

Let us compute the mesh defined by P(2) and 7~!P(2). We claim that P(1)
and S(2) are the only successors of P(2). Indeed, let M be a successor of P(2) in
I'(mod A). If M is projective, then we already verified that M has to be P(1). If
M is not projective, then P(2) is a middle term in the mesh defined by 7M and
M. But the only predecessor of P(2) is P(3) because the inclusion P(3) — P(2) is
the right minimal almost split morphism with target P(2). Thus, 7M = P(3) and
M = 771P(3) 22 §(2), as claimed.
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We already know that there is only one arrow from P(2) to P(1) and from P(2)
to S(2). This means that the left minimal almost split morphism with domain P(2)
is of the form P(2) — P(1) @ S(2). The component P(2) — P(1) is an irreducible
map but, since Irr 4 (P(2), P(1)) is one-dimensional, there is only one irreducible map
from P(2) to P(1) (up to multiplication by a nonzero scalar), which is the inclusion.
Similarly, the component P(2) — S(2) must be the projection 7 from the previous
almost split sequence. In this way, we have found the morphism P(2) — P(1) ® S(2)
and, calculating the cokernel, we get another almost split sequence:

0 —— P(2) —— P(1)® S(2) > 1(2) > 0.

Hence, 771 P(2) = I(2) and we update our picture of I'(mod A):

Since S(2) is not injective, there is still a mesh left to be found. We affirm that
I(2) is the only successor of S(2). Indeed, let M be a successor of S(2). It cannot
be projective because we already know the predecessors of every projective module
and S(2) is not one of them. Thus, S(2) is a middle term in the mesh defined by 7M
and M and, in particular, 7M is a predecessor of S(2). But we have already found
the mesh ending at S(2), so we know that the only predecessor of S(2) is P(2). This
proves that 7M = P(2) and M = 771 P(2) = I(2), as desired.

Arguing as before, the inclusion S(2) — I(2) (which appears in the previous almost
split sequence) is the left minimal almost split morphism with source S(2). Taking
the cokernel, we arrive at the almost split sequence

0—— S(2) —— I(2) (1) 0,

and we get the third mesh in I'(mod A):

P(1) =1(3)
/ \
P(2) ~mmmee 1(2)
N
)21 6) T — 0] e ——— I(1)

To conclude, observe that the successors of the injective modules 1(3) and I(2) are
all listed above since I(2) is the quotient of I(3) by its socle and (1) is the quotient of
I(2) by its socle (see Proposition 3.2.1). The simple module /(1) has no successors by
the dual of Proposition 3.3.7. Therefore, we have constructed a connected component
of I'(mod A).

Actually, by Theorem 2.3.4 and Section A.2, A has exactly six indecomposable
modules, so the last quiver above is the AR-quiver of A. Writing the dimension
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vector in place of each indecomposable module, we can also represent I'(mod A) by

We remark that the AR-quiver of the path algebra of A,, (with arrows pointing in
the same direction) has also a triangular shape, where each side has as vertices the
indecomposable projective modules, the indecomposable injective modules and the
simple modules, respectively. For example, for n = 4, it is

This can be proved in a similar way as we did above.

This example illustrates an algorithm to compute the AR-quiver of A. Its steps
can be (not so much precisely) described as follows:

(1) Find the indecomposable projective modules;

(2) Find the indecomposable summands of their radicals and draw the full subquiver
of I'(mod A) with projective vertices;

(3) Use the information above to compute the almost split sequences that start with
a simple projective module;

(4) Repeat step (3) with the successors of the simple projectives in I'(mod A), and
then with their successors, and so on;

(5) Stop if you reach the indecomposable injective modules.

This is the knitting algorithm. It does not work in all cases but, for path alge-
bras, it always constructs the so-called “postprojective” component of I'(mod A) (see
Proposition 3.5.3). For some more details and examples where the knitting algorithm
can be applied, see |2, Section IV.1.3| and |7, Chapter 7].

For the next examples, we will just calculate the dimension vectors of the indecom-
posable modules, as we did at the end of Example 3.4.1. This is enough to distinguish
indecomposable modules over path algebras of Dynkin quivers due to Theorem 2.3.4.
It also makes it easier to apply the knitting algorithm: if we have already found a non-
injective indecomposable module L and its successors My, ..., M, with multiplicities
ni,...,ns then the dimension vector of 77 'L can be calculated as

t
dim7 'L = n;-dimM; — dim L
=1
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because we have an almost split sequence

t
0— L — PM —— 'L —0
=1

We remark that, with some more work, we can do better and calculate explicitly the
indecomposable modules, as we did in Example 3.4.1.

In Example 3.4.1, we did not know immediately that the quiver we found was the
AR-quiver of A, but only a connected component. We had to count the isomorphism
classes of indecomposable modules to check that we indeed had found I'(mod A).
Thanks to the next theorem, this was not necessary.

Theorem 3.4.2 (Auslander). Suppose A is a connected finite-dimensional K-algebra.
If I'(mod A) has a connected component I" whose modules have bounded composition
length, then A is of finite representation type and I'(mod A) = I". In particular, this
is the case if I'(mod A) admits a finite connected component I'.

A proof can be found in [2, Theorem VI.1.7| and [3, Chapter IV, Theorem 5.4|.

Example 3.4.3. Suppose A = K(Q, where @ is the Dynkin diagram D4 with the
following orientation:

By Lemmas 1.3.6 and 1.3.7, the dimension vectors of the projective and the injective
indecomposable modules are:

P(1) = 1000 = S(1),
P(2) = 0100 = S(2),
P(3) = 0010 = S(3),
P(4) = 1111,
I(1) = 1001,
I(2) = 0101,
I(3) = 0011,
I(4) = 0001 = S(4)

To simplify the notation, these four juxtaposed numbers represent the dimension at
each vertex of the representation, and the i-th number corresponds to the vertex la-
beled by i. Lemma 1.3.6 also shows that P(1), P(2) and P(3) are the direct summands
of the radical of P(4), so the full subquiver of I'(mod A) with projective vertices is

1000

™~

0100 —— 1111

e

0010
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Now, Proposition 3.3.7 says that the simple projective modules P(1), P(2) and
P(3) have just P(4) as a successor in the AR-quiver. Hence, we can compute the
meshes that start with them. In order to do so, we simply subtract dim P () from
dim P(4) for 1 <1i < 3. We get:

As we argued in Example 3.4.1, we can show that these three new indecomposable
modules are all the successors of P(4), so we can form a new mesh. In terms of
dimension vectors, we have

dim 7' P(4) = (0111 + 1011 + 1101) — 1111 = 1112.
We continue in this way until we arrive at':

110100 R 1155 1001

0100 > 1111 1011 > 1112 0101 —— 0001

e

The four rightmost dimension vectors are exactly the dimension vectors of the
indecomposable injective modules. By Theorem 2.3.4, they indeed represent such
modules. One can check that all their successors are again injective and are drawn in
the picture. We have thus constructed a connected component of I'(mod A) and, by
Auslander’s theorem, this is the whole AR-quiver.

Note that there are twelve isomorphism classes of indecomposable modules, as
expected from the table in Section A.2.

110 [ 1101 —=mmmmmmm o 0011

Example 3.4.4. Take A = KQ/I, where @ is the quiver

1 —25 2 y 3 — 1 4

and [ is the admissible ideal generated by the relation a8vy. Let us find the AR-quiver
of A. As we will see, the knitting algorithm will only produce indecomposable modules
whose dimension vectors are made of zeros and ones. If we fix a vector like this, it is
not hard to check that, up to isomorphism, there exists at most one indecomposable
A-module with such dimension vector. Hence, we will again describe I'(mod A) just
with dimension vectors.

We described the projective and the injective indecomposable modules in Example
1.3.8. One can check that the simple projective P(4) is the radical of P(3), which in

In the middle row, every module is the Auslander-Reiten translate of the module that comes
two positions to the right, but the dashed lines were omitted for clarity.
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turn is the radical of P(2). The full subquiver of I'(mod A) with these vertices is thus

0111

P
0011

A
0001

The projective module P(1) is missing. The problem is that its radical is not pro-
jective, so it is not directly connected to the other other projective vertices in the
AR-quiver. For the moment, we ignore this problem and continue applying the knit-
ting algorithm.

Calculating the mesh of the simple projective with dimension vector 0001 and then
the mesh of the indecomposable projective with dimension vector 0011, we get:

The indecomposable module with dimension vector 0110 is the radical of P(1), hence
we have to add an arrow:

0111 dim P(1) = 1110

There is no mesh starting or ending at the indecomposable modules represented by
0111 and 1110 because they are both projective and injective at the same time. We
continue with the algorithm an add the mesh starting at 0010:

Now, we claim that the module X represented by 0110 has all its successors in
the diagram above, even though we had to add the projective P(1) in the middle of
the algorithm. Indeed, let M be a successor of X. If M is projective, then M has to
be P(1), which is depicted above. If M is not projective, then 7M is a predecessor
of X. Since we computed the mesh ending at X, we must have dim 7M = 0111 or
dim 7M = 0010. The first case cannot happen because 7M is not injective by Lemma
3.2.4. Therefore, 7M is the module with dimension vector 0010 and M = 7—1(7 M)
has dimension vector 0100, as desired. In this way, we can continue applying the
knitting algorithm.
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After drawing two more meshes, we arrive at:

We have found all projective and injective indecomposable modules. Moreover, every
noninjective indecomposable above is the left term of some mesh and every nonpro-
jective indecomposable is the right term of some mesh. Hence, this is a connected
component of I'(mod A). By Auslander’s theorem, A has finite representation type
and the quiver above is its AR-quiver.

We remark once more that the modules with dimension vectors 0111 and 1110 are
not Auslander-Reiten translates.

In all previous examples, the AR-quivers did not have multiple arrows between
two vertices. The following result explains this coincidence.

Proposition 3.4.5. If I'(mod A) has multiple arrows, then A has infinite represen-
tation type.

We refer the reader to [3, Chapter IV, Proposition 4.9| for a proof. The idea is
that, if there are two arrows from a vertex to another, then the Auslander-Reiten
translates of these vertices are of higher dimension and still connected by a multiple
arrow, so we can repeat the argument and get indecomposable modules of arbitrarily
high dimension. This is illustrated in the next example.

Example 3.4.6. Take A = K(Q, where @ is the quiver

1 { 2.

The indecomposable projective module P(2) is simple and P(1) is given by the fol-
lowing representation:

1

)

K —= K2,

iy

where the maps are represented by their matrices in the canonical bases. We have
rad(P(1)) = P(2) & P(2), so the knitting algorithm first gives us

The dimension vector of 771 P(2) is then

dim77'P(2) = 2 - dim P(1) — dim P(2) = (2, 3).
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Drawing the mesh, we get:

Continuing in the same way, we get that the dimension vector of 7=1P(1) is (3,4).
Note that the dimension of 771 P(1) and 77! P(2) exceed the dimension of A, so these
modules are not injective and we can continue with the algorithm. The dimension
keeps increasing and one can show that

142n,242 ifi=1
dim " P(i) = (1+2n,2 4 2n) T
(2n,1 + 2n) if i =2,

for n > 0. In the end, we get an infinite connected component of I'(mod A):

This is not the whole AR-quiver of A. For example, the indecomposable injective
modules do not appear above, and we can actually find them with a “dual” knitting
algorithm which produces another infinite connected component of I'(mod A) similar
to the one above. There are still connected components left to be found. See |2,
Section IV.4] for a full description.

3.5 The hereditary case

Suppose @ is an acyclic and connected quiver. In this section, we prove some particular
properties of the Auslander-Reiten quiver of the path algebra K@, where K is an
algebraically closed field. All the results will essentially be a consequence of the fact
that K@ is a hereditary algebra (see Section 2.1).

Lemma 3.5.1. Every predecessor of a projective module in I'(mod K Q) is again pro-
jective. Moreover, the full subquiver of I'(mod K Q) consisting of the indecomposable
projective modules is connected and isomorphic to the opposite quiver Q°P. The dual
result for injective modules also holds.

Proof. By Proposition 3.2.1 and Theorem 3.3.5, the predecessors of an indecomposable
projective module P are the indecomposable direct summands of rad(P). Since KQ
is hereditary, they are all projective.

Let x € Qg. From the proof of Proposition 2.1.2, we know that

rad(P(z)) = P(y)"™ @ --- @ P(y,)",

where 1, ...,y, are the successors of x in ) and n; is the number of arrows from x
to y;, for each 1 < ¢ < r. Therefore, P(y1),..., P(y.) are the predecessors of P(x) in
I'(mod K@) and, by Theorem 3.3.5, the number of arrows from P(y;) to P(x) is n;.
The second statement of the lemma follows. O

This lemma allows us to find some special connected components of I'(mod KQ).
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Definition 3.5.2. Let A be an arbitrary finite-dimensional K-algebra and let I" be
a connected component of I'(mod A). We say that I" is postprojective if every in-
decomposable module in I' is isomorphic to 7~* P for some indecomposable projective
module P and some t > 0. Dually, we say that I" is preinjective if every indecom-
posable module in T is isomorphic to 7¢I for some indecomposable injective module
I and some t > 0.

In the first three examples of Section 3.4, I'(mod A) is connected and it is both
postprojective and preinjective. The connected component described in Example 3.4.6
is postprojective.

Proposition 3.5.3. If @ is a connected and acyclic quiver, then I'(mod K@) admits a
unique postprojective component (which contains all indecomposable projective mod-
ules) and a unique preinjective component (which contains all indecomposable injec-
tive modules). They are both acyclic.

Proof. We will consider just the case of the postprojective component, the other case
being analogous. By Lemma 3.5.1, all indecomposable projective modules lie in the
same connected component I' of I'(mod K Q). We will prove by contradiction that I
is postprojective.

Suppose there is an indecomposable module M in I' which is not of the form
77tP for some projective P and t > 0. Since I' is connected, there is an undirected
path between M and some indecomposable projective. In particular, there exists an
indecomposable module L of the form 77P and an irreducible morphism L — M or
M — L. We may change M and L so that ¢ is minimal. We have two cases.

Suppose first that there is an irreducible morphism M — L. If L is projective,
then M is also projective by Lemma 3.5.1, a contradiction. If L is not projective, then
t > 1 and, due to the mesh defined by 7L and L, there is an irreducible morphism
7L — M. But 7L = 7~ (=D P, contradicting the minimality of ¢.

Now, suppose there is an irreducible morphism L — M. By hypothesis, M is not
projective and so there is an irreducible morphism 7M — L. If t > 1, then L = 7 'P
is not projective either and now we get an irreducible morphism 7L — 7M. Actually,
7°M is not projective for all s > 0, so we can repeat this argument ¢ times to find
an irreducible morphism 7L = P — 7!M. Finally, we have an irreducible morphism
7HIM — P and 7171 M is projective by Lemma 3.5.1, a contradiction.

This concludes the proof that I' is postprojective. For the uniqueness, note that,
for a nonprojective indecomposable M, both 7M and M are in the same connected
component due to the mesh they define. Hence, any postprojective component of
I'(mod K@) contains a projective module and must be equal to I

Let us prove that I' is acyclic. If not, then we have a cycle of irreducible morphisms

MO > M, >Mm_1*>Mm:M0

in I'. Since I is postprojective, for each 1 < i < m, the module M; is isomorphic to
7t P; for some indecomposable projective P; and some t; > 0. If t = min{t; | 1 <i <
m}, a similar argument as given before shows that we can apply the Auslander-Reiten
translation ¢ times and still arrive at a cycle of irreducible morphisms:

TtMO > TtMl > TtMm,1 —_— TtMo.

~

By definition of ¢, one of the modules above is projective, hence all of them are projec-
tive by Lemma 3.5.1. Therefore, there is a cycle in the full subquiver of I'(mod K Q)
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consisting of the projective vertices, but this subquiver is isomorphic to the acyclic
quiver Q°P by the same lemma, a contradiction. O

We finish the section by highlighting some properties of the orbits of the Auslander-
Reiten translation in the case of finite representation type.

Definition 3.5.4. Let M be an indecomposable A-module. The 7-orbit of M is the
set of isomorphism classes of indecomposable modules of the form 7/M for t € Z. It
is periodic if 7'M = M for some t > 1.

Corollary 3.5.5. Suppose @ is a Dynkin quiver. Then, the 7-orbit of any inde-
composable K Q-module contains a unique projective module and a unique injective
module. In particular, the number of 7-orbits is the cardinality of )y and they are
all nonperiodic.

Proof. By Gabriel’s theorem, I'(mod K@) is a finite quiver, hence connected by Aus-
lander’s theorem. Proposition 3.5.3 then implies that I'(mod K@) is both postprojec-
tive and preinjective. In particular, every 7-orbit contains a projective module and
an injective module.

For the uniqueness, if P and P’ are indecomposable projective modules in the
same T-orbit, then we may assume there is ¢t > 0 such that P = 7tP’. If t > 1, then
7P’ = 0 by Lemma 3.2.4, which is not the case, so t = 0 and P = P’. A similar
argument holds for the injective case.

It is easy to see that different 7-orbits are disjoint. Thus, the number of 7-orbits is
the number of isomorphism classes of projective (or injective) indecomposable mod-
ules, which is the number of vertices of Q).

Lastly, if a 7-orbit is periodic, one can check that there is ¢ > 1 such that 7/M = M
for every M in it. Taking M to be projective, we get a contradiction. O
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Chapter 4

Fractionally Calabi-Yau algebras

Let @ be a Dynkin quiver. We saw in Section 3.4 how to construct the AR-quiver of
the path algebra K@ using the knitting algorithm. By Theorem 2.3.4, it suffices to
work with dimension vectors and, in this the case, the meshes drawn by the algorithm
can be computed combinatorially. If we did not know the dimension vectors of the
indecomposable injective modules in advance, we could theoretically continue applying
the algorithm indefinitely. Let us see what would happen.

Take @ to be the Dynkin diagram Az with the orientation given in Example 3.4.1.
This example showed that I'(mod K@) is

(1,1,1)

N

where each indecomposable module is represented by its dimension vector. Computing
the “theoretical” mesh starting at the indecomposable injective with dimension vector
(1,1,1), we get a “module” with “dimension vector”

(1,1,0) — (1,1,1) = (0,0, —1).

This is nonsense, but let us continue anyway. Now, the “dimension vector” of the
“Auslander-Reiten translate” of (1,1,0) is

(0,0,—1) + (1,0,0) — (1,1,0) = (0,—1,—1).

Drawing these two meshes and then the one starting with (1,0, 0), we get the following
picture:

(1,1,1) e (0,0, 1)
s ~ e ~
(00 W P ——— (1,1,0) (0,—1,—1)
e >~ s >~ 7 ~
(0§ JE—— (O () (1,0,0) o (-1,-1,-1)

Remarkably, the full subquiver consisting of these three new vectors is the same as
the full subquiver consisting of the projective vertices, but all the signs are changed.
Therefore, if we continue with the knitting algorithm, we get again the AR-quiver
of K@, but now it is flipped upside down and with opposite signs. Computing even
more meshes, we recover I'(mod K@) and the pattern repeats.
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This behavior occurs for any Dynkin quiver. For example, if we do the same for
@ = D4 with the orientation given in Example 3.4.3, the new vectors we get are the
following:

They are again the opposite of the dimension vectors of the indecomposable projective
modules. Thus, if we carry on with the algorithm forever, we alternately find “positive”
and “negative” copies of I'(mod K Q).

The first goal of this chapter is to explain the idea behind this phenomenon. The
right framework for our study will be the bounded derived category of mod K@,
and it is its AR-quiver that this extended knitting algorithm is drawing. However,
instead of developing Auslander-Reiten theory for derived categories, we will take
another approach: our main objective is to prove that K@ is a fractionally Calabi-
Yau algebra. We need some new concepts in order to define what this means but,
during the process, we will see how to upgrade the Auslander-Reiten translation to
the derived case and understand the mystery depicted above.

The first three sections introduce the definitions and properties that we need,
following mostly [26]. A proof of the main result, which is based on the appendix of
[12], is given in the last section. Although we assume the reader has some familiarity
with derived categories, a quick review and references can be found in Appendix B.

Remark. Throughout the chapter, A denotes a finite-dimensional K-algebra. At
some points, we will assume it to be hereditary or of finite global dimension. All
A-modules are of finite dimension over K, which is an algebraically closed field.

4.1 The derived category of a hereditary algebra

In this section, we will study some properties of the bounded derived category D°(A)
of mod A when A is hereditary.

As detailed in Appendix B, we will use a homological notation instead of a coho-
mological one, that is, an object X € D’(A) is a bounded chain complex

dn+ 1 dn

X= o — Xp1 X, Xpoq —— o

of A-modules, where the indices are decreasing. Moreover, by taking homology in the
n-th degree, we get a functor H,, : D’(A) — mod A. For X € D°(A), the shift X[1] is
the chain complex with

X[y =Xn_1 and XM= _gX

for all n € Z. This is the translation functor from the triangulated structure of D°(A).
The main result of this section is the following.

Proposition 4.1.1. If A is a hereditary algebra, then every chain complex X € DP(A)
is isomorphic in D?(A) to its homology.
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The homology of X as a complex is the chain complex
s Hp (X)) =% Hy(X) —% Hy (X)) —— -+

If we denote by M|[n] the stalk complex whose only nonzero entry is the A-module M
in the n-th degree, then the homology of X is the direct sum

P H.(X)[n]

neZ
in D*(A). Observe that this is a finite direct sum because X is bounded.

Proof. Tt suffices to find, for each n € Z, a morphism H,(X)[n] — X in D°(A)
which induces an isomorphism after taking homology in degree n. Indeed, with these
morphisms, we get a quasi-isomorphism (in D°(A)) from the homology of X to X due
to the direct sum decomposition above.

Fix n € Z. In mod A, if we consider the long exact sequence of Ext obtained after
applying the functor Hom 4 (H,,(X), —) to the short exact sequence

0 —— kerd,1 — Xpp1 —— imdp1 —— 0,
we get in particular an exact sequence
Extl (H,(X), Xnt1) —2= Exth (H,(X),imdpy1) — BExt? (Hu(X), kerd,11).

The last term vanishes because A is hereditary, hence the map « is surjective. If we
view the short exact sequence

0 —— imd,y; — kerd, —— H,(X) —— 0

as an element of Ext!, (H, (X),imd,1), the surjectivity of a gives us a commutative
diagram

0 — X1 —2— By — 25 Hy(X) —— 0
H (+)

el

0 —— imd,y; — kerd, —— H,(X) —— 0

with exact rows'. Thus, if i : ker d,, — X,, denotes the inclusion, we have the following
commutative diagram:

~
~

> 0 » Hp(X

—

” Xn+1 ! En

~

)
.

> Xnpp — Xapi » X, Xpog — o

Denote the complex in the middle row by E. The upper part of the diagram above
represents a map of complexes ¢ : E — H,(X)[n] which is a quasi-isomorphism since

'If we interpret Extl as a group of extensions, this comes from the definition of the map o =
Exth (H,(X),dn+1) (see [1, Chapitre IX, Section 5]).
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the first row in (x) is exact. Finally, the bottom part represents a map ¢ : E — X and
(¥) implies that H,(¢) is an isomorphism. Therefore, the morphism ¢ ~! in D°(A)
is the one we were searching for. O

Recall that, for every n € Z, there is a copy of mod A inside D°(A) consisting of
complexes concentrated in degree n. The result above is saying that, if A is hereditary,
any object of D°(A) is a finite direct sum of objects in these subcategories. In addition,
it is easy to tell what the morphisms between two stalk complexes are:

0 fn<morn>m+1
Hompp 4y (M[m], N[n]) = ¢ Homa(M,N) ifn=m
Exth (M,N) ifn=m+1

for m,n € Z and A-modules M and N. This comes from Proposition B.3.2 and from
the fact that A is hereditary.

Corollary 4.1.2. Suppose A is a hereditary algebra. Then the indecomposable ob-
jects of D?(A) are the stalk complexes M[n] where M is an indecomposable A-module
and n € Z. Furthermore, D°(A) is a Krull-Schmidt category.

An additive category is called Krull-Schmidt if every object can be written as a
finite direct sum of indecomposable objects having local endomorphism rings. In such
categories, we can adapt the proof of the Krull-Schmidt theorem for modules and get
the uniqueness result for direct sum decompositions with indecomposable objects.

Proof. Let X € DY(A) be an indecomposable object. By Proposition 4.1.1, we have
an isomorphism

X =@ Ha(X)[n] (*)

neL

in DY(A), and this direct sum is finite because we are in the bounded derived category.
Since X is indecomposable, there is exactly one n € Z with H,(X) # 0 and X is the
stalk complex H,,(X)[n]. Using the embedding of mod A in D’(A) in degree n, it is
easy to see that H,(X) has to be indecomposable.

Conversely, let M be an indecomposable A-module and n € Z. If M[n]| 2 X @Y
for two complexes X,Y € Db(A), then, by taking homology, it follows that H,,(X) =
Hp(Y)=0form #nand M = H,(X)® H,(Y). By the indecomposability of M, we
get that X or Y is exact and hence quasi-isomorphic to the zero complex. This implies
that direct sum decomposition is trivial, proving that M|n] is an indecomposable
object of DP(A).

For the second part, any object X € DY(A) can be written as in (x) by Proposition
4.1.1. Decomposing each H,(X) as a finite direct sum of indecomposable A-modules,
we see that X is isomorphic to a finite direct sum of indecomposable objects in D°(A).
Moreover, for an indecomposable stalk complex M [n|, note that

Endpe(4)(M|n]) = Enda(M),

which is a local algebra because M is an indecomposable module. O

4.2 Revisiting the Grothendieck group

We can adapt the definition of Grothendieck group for Db(A) if we replace short exact
sequences by distinguished triangles.



4.2. Revisiting the Grothendieck group 61

Definition 4.2.1. The Grothendieck group K(D’(A)) of D’(A) is the quotient of
the free abelian group on the set of isomorphism classes [X] of complexes X in DP(A)
by the subgroup generated by all expressions of the form

[X] = [Y]+ (7]

whenever there is a distinguished triangle

X Y Z X[1].

The element in Ko(D’(A)) corresponding to a complex X will also be denoted by [X].
A similar definition works for any essentially small triangulated category.
Lemma 4.2.2. For X € D’(A), we have [X[1]] = —[X] in Ko(D*(A)).

Proof. By the axiom (TR1) of triangulated categories (see Section B.2),

x 4, x 0 X1

is a distinguished triangle. By (TR2), the triangle

—id

X — 0 — X[1] — X][1]

is distinguished too. Therefore, [X]+ [X[1]] = [0] in the Grothendieck group and it is
enough to check that [0] is the zero element of Ko(D?(A)). Indeed, (TR1) gives the
distinguished triangle

0950 0 o[1],

hence [0] = [0] — [0] + [0] = 0 in Ko(D(A)). O

Interestingly, this new definition is closely related to Ky(A). Remember that any
short exact sequence of A-modules

0— Lt 2N _— 40

induces a distinguished triangle of stalk complexes

f

L M5 N L[1].

Thus, the inclusion mod A < DP(A) induces a homomorphism of abelian groups
¢ : Ko(A) — Ko(Db(A)) which sends [M] to the class of the stalk complex M con-
centrated in degree zero.

Proposition 4.2.3. The map ¢ is an isomorphism.

Proof. Let us first find a left inverse for ¢. Any distinguished triangle

X Y Z X[1]
induces a long exact sequence in homology:

- — Hp1(Z) — Hp(X) — Hp(Y) — Hy(Z) — Hp1(X) — -+
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This sequence is bounded because we started in the bounded derived category. Hence,
in the Grothendieck group of A we get the following relation:

DD HW(X)] = Y ()" Ha (V)] + Y (~1)"[Ha(Z)] = 0.
neZ nez nez

This proves that the map
) Ko(D'(A)) — Ko(A)
[X] — D (1) [Ha(X)]

neL

is well-defined. It is immediate that ¢ is a left inverse for . In particular, ¢ is
injective.

Now, let X be a bounded chain complex of A-modules. Suppose m € Z is such
that n > m implies X,, = 0. We have the following morphism of complexes

0 > X > 0 oo

ool

. dim—

e 0 —— Xl — X 5

where the top row is concentrated in degree m — 1 and the bottom row is a (stupid)
truncation X’ of X. From the definition, it is not hard to see that the cone of this
morphism is X, so we have

[X] = [XT] = [Xm[m = 1]] = [X] + (= 1) [Xon]

in Ko(Db(A)), where we view X, as a stalk complex concentrated in degree zero.
Repeating this procedure with X’ and its subsequent truncations, we get

ne”L nez

This shows that ¢ is surjective, concluding the proof. Observe that it also gives us
another way of writing the inverse . O

This isomorphism allows us to interpret the dimension vectors with negative coor-
dinates from the introduction of the chapter. Instead of looking at dimension vectors
while drawing the AR-quiver of A, we can equivalently look at the class of each in-
decomposable A-module in Ky(A). By Proposition 4.2.3, these classes are elements
of Ko(D(A)). If A = KQ with @ Dynkin, we will see in the next section that the
weird dimension vectors we found in the beginning correspond to the shifts of the
indecomposable projective modules, which explains the negative signs.

We end this section with a result in this direction.

Lemma 4.2.4. Suppose @ is a Dynkin quiver. If X and Y are indecomposable objects
in D°(K Q) with the same class in the Grothendieck group, then X 2 Y'[2a] for some
a € Z. Similarly, if [X] = —[Y] in K(D?(A)), then X = Y [2b 4+ 1] for some b € Z.

Proof. Since K@ is hereditary, we can assume by Corollary 4.1.2 that X = M][m]
and Y = N|n] for m,n € Z and indecomposable K@-modules M and N. Thus, in
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Ko(D"(A)), we have

On the other hand, in K((A), Theorem 2.3.4 says that [M] and [IN] correspond to
positive roots of (). Hence, using the identification from Proposition 4.2.3, we must
have (—1)™*" = 1 and, consequently, m — n is even. Knowing this, the two previous
results also imply that M = N, so

Y[m —n]=N[m] = M[m] =X,

as desired. The second statement follows from the first after shifting Y. O

4.3 Serre functors and the derived Nakayama functor

For the sake of defining what is a fractionally Calabi-Yau algebra, we first need to
introduce Serre functors and see how they appear in our study of D?(A). As a result,
we will develop the tools to explain what we discussed in the introduction of the
chapter.

Definition 4.3.1. Let C be a K-linear category with finite-dimensional Hom-sets. A
Serre functor is an equivalence F' : C — C together with natural isomorphisms

nx,y : Home(X,Y) — D Home (Y, FX)
for all X,Y € C. Here, recall that D Hom¢ (Y, FX) is the dual space of Home (Y, FX).

Remark. We will not use other properties of Serre functors besides the definition.
Nevertheless, it is important to know that they are essentially unique. Indeed, if F
and F' are two Serre functors with natural isomorphisms 7,y and 7y y-, then we have
a natural isomorphism of functors

Dy )7t
Home(—, FX) -2, D Home(x, —) %),

Home(—, F'X)
for every X € C. We get from the Yoneda lemma a natural isomorphism from F to F’
which is compatible with 7xy and 7'y ,-. In this sense, having or not a Serre functor
is an intrinsic property of the category C and not extra information.

For more details on Serre functors, see [9] and [10].

Suppose that A has finite global dimension. We will prove that the left derived
functor of the Nakayama functor is a Serre functor on DP(A). Let us make this
sentence more precise. In Section 1.4, we saw that the Nakayama functor induces an
equivalence v : proj A — inj A. Since it is an additive functor, it is not difficult to see
that we can extended it to an equivalence

v : KP(proj A) — Kb (inj A),

where K°(proj A) (resp., Kb(inj A)) denotes the full subcategory of the bounded ho-
motopy category K?(A) of mod A whose objects are bounded chain complexes of pro-
jective (resp., injective) A-modules'. By the hypothesis on A, the canonical functor

!See Appendix B for more details on this and on what follows.
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KCb(proj A) — DP(A) is an equivalence and we can take the left derived functor Ly of
v. If G denotes a quasi-inverse of this equivalence, Lv is defined as the composition

Db(A) —C Kb(proj A) —“— KP(inj A) —— DP(A).

The fact that A is of global dimension also implies that the last functor above is an
equivalence, so we deduce that Lv is an autoequivalence' of Db(A). For Lv to be a
Serre functor, it remains to find the natural isomorphism in Definition 4.3.1.

Lemma 4.3.2. Let X and Y be bounded complexes of A-modules. If X, is projective
for all n € Z, then there is a natural isomorphism

D HOIIIDb(A) (X, Y) = Home(A) (Y, VX)

Proof. Since X is a complex of projective modules and vX is a complex of injective
modules, it is equivalent to find a natural isomorphism

D Hom,cb(A) (X, Y) = Home(A) (K I/X)

by Lemma B.3.4. We will see how to do this in a particular case and then we explain
the idea behind the general case.

Suppose X and Y are concentrated in degree zero. For simplicity, we also denote
Xp and Yy by X and Y, respectively. We have

D Homyer(4)(X,Y) = DHomy(X,Y) = Homg (Homy (X, Y), K).
Now, observe that there is a natural homomorphism
Y ®4 X' — Homy(X,Y)
y© fr— (z = yf(z)),

where we recall from Section 1.4 that X is the left A-module Hom (X, A4). If X is
the regular module A 4, it is not hard to see that this map is an isomorphism. Hence, it
is also an isomorphism for a general projective module X because all operations used
in the definition of the map above are linear on the variable X. With this isomorphism
in hand, we obtain

Hom g (Hom4(X,Y), K) = Homg (Y ®4 X!, K) = Hom (Y, Homg (X', K))

where we used the “tensor-hom” adjunction. But Homg (X?, K) = DX = vX, so the
last vector space above is

Homy (Y, vX) = Homyeo 4y (Y, vX),

as desired.

For general X and Y, the proof is essentially the same, but we need to upgrade
the dual, the tensor product and the functor Hom to complexes. The definitions can
be found in [8, Section 2.7|. They satisfy the same properties that we used above (see
Lemmas 4.3.13 and 6.4.4 of [26]), so we get a natural isomorphism

DHomx(X,Y) = Homy (Y, vX)

1A quasi-inverse is given by the right derived functor Rv~! of the inverse Nakayama functor v~ .
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of complexes of K-vector spaces. By |26, Lemma 4.3.14|, we arrive at
D HOII];Cb(A) (X, Y) = HOI’H,Cb(A) (Y, I/X)
after taking homology in degree zero. O

Proposition 4.3.3. If A has finite global dimension, then Lv : D?(A) — Db(A) is a
Serre functor.

Proof. We already saw that Lv is an autoequivalence. If G denotes a quasi-inverse of
the canonical functor i : K°(proj A) — DY(A), then there is a natural isomorphism®
GX — X in D°(A). Hence, we have

Home(A) (X,Y) = Home(A) (GX,Y).

Since GX is a bounded complex of projective modules, Lemma 4.3.2 says that the
vector space above is naturally isomorphic to

D Hompy 4y (Y, v(GX)) = D Hompy (Y, (Lv) (X)),
as needed. O

Remark. When A is not of finite global dimension, the functor K’(proj A) — D?(A)
is not an equivalence but it is still fully faithful. Thus, if its essential image per(A),
the so-called perfect derived category of A, coincides with the essential image of
KP(inj A) — DP(A), we can repeat the argument above to show that Lv is a Serre
functor on per(A).

This is the case when A is a Gorenstein algebra, that is, the injective dimensions
of the regular modules A4 and 4A are finite. Indeed, since every projective module
is a direct summand of a power of A4, they all have finite injective dimension, hence
every bounded complex of projective modules admits a bounded injective resolution.
Analogously, if 4A has finite injective dimension, then D(4A) has finite projective
dimension and so every bounded complex of injective modules admits a bounded
projective resolution. Therefore, the copies of K?(proj A) and K°(inj A) inside D?(A)
coincide.

We refer the reader to |26, Chapter 6] for more details.

Let us specialize to the case when A is hereditary. We will see that the derived
Nakayama functor LLv has a particular description.

Let M be an indecomposable A-module and view it as a complex concentrated
in degree zero. On objects, a quasi-inverse G of the functor K’(proj A) — D(A)
computes a projective resolution. Thus, in order to find (Lv)(M), choose a minimal
projective resolution

0 P25 P M s 0.

It has length at most one because we are assuming that A is hereditary. It follows
that (Lv)(M) is the complex

-—— 00— vP Vp>uP0 0

~

!'Notice that GX is (iG)(X) since i is the inclusion map on objects.
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By Proposition 4.1.1, this complex is isomorphic to its homology. Using the exact
sequence in Lemma 3.2.4, we can then write (Lv)(M) as

30— M —Y uM > 0

If M is projective, then 7M = 0 and we are left with the stalk complex vM con-
centrated in degree zero. On the other hand, if M is not projective, then M! =
Hom4 (M, A) is zero, because the image of a homomorphism M — A has to be pro-
jective by the hypothesis on A and so it is a direct summand of the indecomposable
module M. In this case, vM = DM! = 0. To sum it up, we have

vM if M is projective,
(Lv)(M) = :

(tM)[1] otherwise.
Since Lv is additive and commutes with the shift, this allows us to compute (Lv)(X)
for any X € Db(A) by Proposition 4.1.1.

Define 7 as the composition [—1] o Lv. For an indecomposable A-module M, we
have
{(I/M)[—l] if M is projective,
™ =

M otherwise.

A quasi-inverse for 7 is 771 := Rv~! o [1], which satisfies

M — {(ulM)[l] if M is injective,
M otherwise,
for M an indecomposable A-module. These two functors are a sort of extension of
the Auslander-Reiten translations. In fact, they are the missing piece for solving the
mystery in the introduction of the chapter!

Suppose @ is a Dynkin quiver and identify mod K Q as a subcategory of D*(K Q).
When applying the knitting algorithm to find the AR-quiver of K@, we may use
77! instead of 77! to compute the meshes. In the original algorithm, we only have
to apply 77! to noninjective indecomposable modules, so 77! gives the same result.
However, if we try to carry on with the algorithm, then we have to apply 7! to the
injective indecomposables and, by the description above, we arrive at a permutation
of the projective indecomposables, but they are now shifted. This is why we found in
the introduction the opposite of the initial dimension vectors.

Remark. Suppose A is of finite global dimension. Let us sketch how to generalize
Auslander-Reiten theory to D?(A). Instead of looking at almost split sequences, we
work with almost split triangles. They are distinguished triangles

X oy 2oz hyoxq

where X and Z are indecomposable objects and f and g are, respectively, left and
right almost split (note that the definition we gave for modules is easily generalized to
this context). One can show that for every indecomposable object Z € DY(A), there
is a unique (up to isomorphism) almost split triangle whose third term is Z. In this
case, the first term is isomorphic to 77, where 7 := [—1] o Lv as above. Hence, T
has a similar role in D?(A) to the one 7 has in mod A. Moreover, we can define the
AR-quiver of D’(A) and, if A is hereditary, it can be obtained from the AR-quiver of
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A by gluing infinitely many copies of I'(mod A) one after the other, as we saw in the
introduction of the chapter.
For more information on this subject, see [18, Chapter I.

We finish with a lemma that will help us in the next section.

Lemma 4.3.4. If A is hereditary, then the functor 7 induces a map on Ko(D"(A))
which coincides with the Coxeter transformation of A defined in Section 1.4.

Proof. Since Lv is a triangulated functor, it sends distinguished triangles to distin-
guished triangles. Hence, it induces a well-defined map Ko(Db(A)) — Ko(D(A)). In
particular, by Lemma 4.2.2, 7 = [~1] o Lv also induces a map on Ko(D?(A)), which
we denote again by 7 for simplicity.

Let us check that, after identifying Ko(D?(A)) with Ko(A) by means of the isomor-
phism in Proposition 4.2.3, T coincides with the Coxeter transformation c4 : Ko(A) —
Ky(A). Indeed, if P is an indecomposable projective A-module, then

m([P]) = [zP] = [(wP)[-1]] = —[vP] = ca([P]),

where the last equality was discussed at the end of Section 1.4. But Lemma 1.4.5 says
that the classes of the indecomposable projective modules generate Ky(A), so 7 and
c4 must agree on the whole Grothendieck group. O

As a consequence, if A is the path algebra of a Dynkin quiver @, then we know
that 7 induces an automorphism of finite order on Ko(D°(A)). Its order is precisely
the Coxeter number associated to @ (see Corollary A.3.4).

4.4 The main theorem

There is another noteworthy symmetry in the examples given in the introduction.
The purpose of this final section is to formalize it and prove it.

Let us illustrate what is happening in the case (Q = A3, with the usual orientation.
In Example 3.4.1, we saw that the AR-quiver of K@ has a triangular shape. In the
way we pictured it, the T-orbits in mod K@ correspond to the rows of I'(mod K Q).
Thus, there are three T-orbits, but they are not of the same size.

Now, if we continue with the knitting algorithm using the functor 77", we saw in
the introduction that we get copies of I'(mod A). Immediately after we draw the first
copy, we have the following picture:

1

The triangle whose vertices are the symbol e is the original copy of I'(mod K@) and, in
Db(K @), these vertices correspond to indecomposable stalk complexes concentrated
in degree zero. On the other hand, each indecomposable object represented by * is
obtained by applying the shift [1] to a suitable vertex of I'(mod K@). This time, note
that each row has the same number of vertices.
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Explicitly, the vertical sides of the parallelogram above represent the following
complexes:

Hence, if we apply 77! to the right side, we get the left side shifted twice. In other
words, we get that 74P = P[2] for every indecomposable projective module P.
By Corollary 3.5.5, every indecomposable K@Q-module is of the form 7—¢P for some
t > 0 and some indecomposable projective P, so we also have 7=4M =2 M[2] for any
indecomposable module M. Finally, since 7 is additive and commutes with shifts, it
follows from Proposition 4.1.1 that 7= and [2] agree on all objects of D*(KQ). We
will prove that 7=* and [2] are in fact isomorphic functors.

If we take Q = D4 with the orientation given in Example 3.4.3, one can check in
the same way that 776X = X[2] for every X € D’(K(Q). The number 6 appearing
here is the Coxeter number associated to Dy, just as the number 4 from the previous
paragraph is the Coxeter number associated to As (see the table in Section A.2 and
Proposition A.2.5). Actually, one can verify a stronger result for Dy: we have 773X =2
X[1] for all X € D*(KQ). As we will see, this refinement comes from Proposition
A.2.6.

These observations hold for any Dynkin quiver (). They describe not only a special
property of D’(KQ) but also a symmetry of the AR-quiver of KQ, as we exemplified
above. In order to prove them, let us formalize what we have discussed. We start
with our main definition.

Definition 4.4.1. Let A be a finite-dimensional K-algebra of finite global dimension.
We say that A is fractionally Calabi-Yau if there are integers m and ¢ > 1 such
that the functors (Lv)¢ and [m] on D°(A) are isomorphic. In this case, note that the
rational number m /¢ is uniquely determined by A. The Calabi-Yau dimension of
A, which we denote by CY-dim A, is the pair (m, ¢) satisfying the previous conditions
with ¢ minimal.

Remark. We are using Lv instead of 77! because the former is the Serre functor of
DY(A). The definition above can be generalized to a general triangulated K-category
admitting a Serre functor, and it was in this context that this notion was introduced.
See 23] for more references on the subject and for different examples of Calabi-Yau
triangulated categories appearing in representation theory.

With this nomenclature, we can state the main theorem of this thesis.

Theorem 4.4.2. Let () be a Dynkin quiver and h the corresponding Coxeter number.
Then K@ is a fractionally Calabi-Yau algebra and

(% -1, %) if @ is of type Ay, D, with n even, E; or Eg,

CY-dim K@ = :
(h—2,h) otherwise.

Most of the rest of the section is devoted to prove this result, so let us fix some

conventions. We take A = K@ and suppose @ is always a Dynkin quiver with n

vertices (labelled as 1,...,n) and Coxeter number h. We also define (m,¥) to be
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either (% -1, %) or (h — 2,h) depending on the type of @, as in the theorem. Note
that £ — m is either 1 or 2.

Lemma 4.4.3. In D%(A), the number of isomorphism classes of indecomposable stalk
complexes concentrated in some fixed degree is nh/2.

Proof. This is the same as the number of indecomposable A-modules, so the lemma
follows from Theorem 2.3.4 and Proposition A.2.5. ]

Lemma 4.4.4. If X € D’(A) is an indecomposable stalk complex concentrated in
degree t > 0, then there is s > 0 and an indecomposable projective module P such
that X = 77°P.

Proof. By hypothesis, X = M][t] for some indecomposable A-module M, which can
be viewed as a complex concentrated in degree zero. In the proof of Corollary 3.5.5,
we saw that I'(mod A) is postprojective, so there exists an indecomposable projective
module P and some s > 0 such that M = 775P = 775P. If t = 0, we are done.
Otherwise, we have

X 2 (P)[f] = (vP)[t — 1,

This new indecomposable complex is concentrated in degree ¢t — 1 > 0, so the result
follows by recursion. O

Proposition 4.4.5. For every X € DP(A), we have 77¢X = X[¢ —m].

Proof. Since 77! is additive and commutes with the shift, we may assume that X is
an indecomposable stalk complex concentrated in degree zero by Proposition 4.1.1.
For simplicity, we identify X with the indecomposable module Xj.

By Lemma 4.3.4, 7 induces the Coxeter transformation of A on Ko(D(A)). In
particular, by the definition of Coxeter number and by Corollary A.3.4, 77" is the
identity on the Grothendieck group. By Lemma 4.2.4, we have 77"X = X[2a] for
some a € Z. Our goal is to prove that a = 1.

By the description of 77! given in the previous section, 77" X has to be concen-
trated in a nonnegative degree, so a > 0. If a = 0, then we have 77"X = X and the
T-orbit of X is periodic, but this contradicts Corollary 3.5.5. Hence, a > 1.

Now, let P(1),..., P(n) denote the indecomposable projective modules. For every
1 < i < n, the argument above produces an integer a; > 1 such that 7~"P(i) =
P(i)[2a;]. Define S; to be the set whose elements are the isomorphism classes of the
complexes

P@), 7YP@G), T72P3), ..., - PTUP(),

for every 1 < ¢ < n. These sets have to be disjoint because, otherwise, there would
be distinct ¢ and j such that P(i) and P(j) are in the same 7-orbit, contradicting
Corollary 3.5.5. In particular, the cardinality of the union of the sets Si,...,5, is
exactly nh. On the other hand, by Lemma 4.4.4, every indecomposable stalk complex
concentrated in degree ¢ > 0 is of the form 77°P(i) for some s > 0 and some 1.
Since 77" P(i) is concentrated in degree 2a; > 2 and since applying 7! can only
increase this degree, we must have 0 < s < hif ¢ = 0 or £ = 1. This proves that
the isomorphism class of any indecomposable stalk complex concentrated in degree
zero or one is inside some S;. By Lemma 4.4.3, the number of such isomorphism
classes is also nh, so we conclude that the union of the sets Si,...,.95, is precisely
the set these isomorphism classes form. Consequently, for each 1 < i < n, we deduce
that 7~ ("D P(4) is concentrated in degree zero or one, hence 7="P(i) = P(i)[2a;] is
concentrated in degree one or two and we must have a; = 1.
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Lastly, coming back to X, Lemma 4.4.4 gives s > 0 and 1 < ¢ < n such that
X = 77°P(i). Therefore, we have

X 2 TPy = (270 P(i))[2] 2 X2,

as desired. This proves the proposition for (m,¢) = (h — 2, h).

When (m,£) = (4 —1,2), we are in the case where Proposition A.2.6 holds. Thus,
7712 acts as the opposite of the identity on Ko(D?(A)) and Lemma 4.2.4 yields
T"/2X = X[2b+ 1] for some b € Z. Since applying 7~ can only increase the degree
where X is concentrated, we must have b = 0 by what we showed before, finishing the
proof. O

Corollary 4.4.6. For every X € D?(A), we have (Lv)‘(X) = X[m]. Moreover, £ is
the smallest positive integer with this property.

Proof. Since 7 = [—1] o Lv, Proposition 4.4.5 implies
(L) (X) = ([ e D) (X) = (' X)[f] = (X[m — )[f] = X[m],

where we used that 7 commutes with the shift.

For the second part, suppose there are a,b € Z with b > 1 such that (Lv)?(X) &
X[a] for all X € D’(A). With a similar calculation as above, we get that 7° and
[a — b] coincide on objects. In particular, 7% acts on Ko(D?(A)) as (—1)?~° times the
identity. Since T acts as the Coxeter transformation, which has order h, it follows'
that £ divides b, proving the minimality condition. O

The only thing left to be proven is that the isomorphism from the corollary above
can be taken to be natural on the variable X. Our proof does not suggest how to do
this, so let us see how this could be achieved.

Recall from Proposition 1.4.3 that the Nakayama functor on mod A is isomorphic
to the functor — ® 4 DA, where we see DA as a bimodule over A. This implies that
Lv can be seen as the functor? — ®HA DA. From the associativity of the derived tensor
product, we have

(Lv) = — @ (DA)ZA".

If the complex of bimodules (DA)®W is quasi-isomorphic to the stalk complex A[m],
where we see A as the regular bimodule, then (L)’ is naturally isomorphic to

~ @4 Alm] = — ® Alm] = [m],

where we used in the first equality that A[m] is, in particular, a bounded complex of
projective left A-modules. Indeed, by Corollary 4.4.6, we have

(DA)®4l = A gl (DA)PAL = (Ly)!(A) = Alm)].

However, this is in principle an isomorphism in Db(A) and not an isomorphism in the
bounded derived category of A-bimodules! In order to finish the proof of Theorem
4.4.2, we will fix this subtle detail.

Let us introduce some new definitions. Denote by A°¢ the enveloping algebra
of A, that is, A¢ = A°? ® x A. Right modules over A¢ are equivalent to bimodules
over A, so we need to work with the category D?(A¢). Denote by End(A) the space of

!We have to apply Proposition A.2.6 if (—1)*7° = —1.
2See Section B.4 for more details on derived tensor products.
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K-algebra endomorphisms of A. For ¢ € End(A), define ,A; to be the A-bimodule
whose underlying K-vector space is A with the action

a-z-b:=p(a)xb

for a,x,b € A, where juxtaposition denotes the multiplication in A. Lastly, recall that
A4 denotes the regular right A-module.

Lemma 4.4.7. Let M be an A-bimodule. If M = A4 as right A-modules, then
M = _A; as bimodules for some ¢ € End(A).

Proof. Let f: M — A4 be an isomorphism of right A-modules. For a € A, the map

Ga: M — M

mr— a-m

is a homomorphism of right A-modules. Thus, fgof ' : A4 — A4 is also a homo-
morphism of right modules and is given by left multiplication by the element

p(a) = fgaf ' (1) = fla- f71(1)).

This defines a map ¢ : A — A which is easily checked to be a homomorphism of
algebras. In this way, the map f satisfies

fla-m)= f(a- f7(f(m)) = fla- f7H1) - f(m)) = fla- f7H (1)) f(m) = ¢(a) f(m)
for a € A and m € M. Hence, f is a bimodule isomorphism from M to ,A;. O

Lemma 4.4.8. Let X be a bounded complex of A-bimodules. If X is isomorphic in
DP(A) to the complex A4 concentrated in degree zero, then X = ,A; in D?(A°) for
some ¢ € End(A).

Proof. Remember that a complex whose homology is concentrated in degree zero is
isomorphic in D?(A) to its homology (see Proposition B.3.1). Therefore,

X = A, in DP(A) <= Ho(X)= Ay and H,(X) =0 for n # 0
and, for ¢ € End(A),

X = ,A; in D’(A%) <= Hp(X) = ,A; and H,(X) = 0 for n # 0.

The result then follows from Lemma 4.4.7. O
Returning to the context of Theorem 4.4.2, we saw that (DA)®il = A[m] in
Db(A). By the previous lemma, there is ¢ € End(A) such that (DA)®4¢ = (pA1)[m]

in DP(A€). We have to prove that ¢ can be taken to be the identity.
Lemma 4.4.9. The endomorphism ¢ is actually an automorphism.

Proof. Since (DA)®it = (4A1)[m] in D(A®), the functor (Lv) is the composition of

the functor F = — ®% (,A1) with the shift [m]. Consequently, we get that F is an
equivalence on DY(A). Let us see how this implies that ¢ is injective (and hence an
automorphism).

Let = € ker ¢. Multiplication on the left by x induces a homomorphism of right
modules f: Ag — Ay. Viewing these modules as complexes concentrated in degree
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zero, we have a map in D?(A) and we may apply the functor F. Because Ay is a
complex of projective modules, we have

F(Ax) = Aa ®% (5A1) = Aa @4 (341)
and we can work with the usual tensor product. In this case,
F(f)(a®b)=fla)@b=2a®b=1® (za) - b=1® ¢(xa)b=0

for every pure tensor a ® b € Ay ®4 (4A1) since € ker ¢. Thus, F'(f) =0. But F'is
an equivalence, so f must be zero and x = f(1) = 0, as desired. O

If z € Aisinvertible, denote by v, : A — A the inner automorphism determined
by x, that is, v, (a) = zar~! for all a € A.

Lemma 4.4.10. Let ¢,7 € End(A). Then ,A; = ;A; as bimodules if and only if
1 = v, for some invertible element x € A.

Proof. Suppose there is an isomorphism f : ,A; — yA;. In particular, it is an
isomorphism of right modules and so it is given by left multiplication by the invertible
element x := f(1). Hence, for a € A, we have

zp(a) = f(p(a)) = fa-1) =a- f(1) =¥(a)r = (a) = zp(a)z™".

This proves that ¥ = ..

Conversely, if 1) = v;¢ for some invertible element z € A, define f : ;A1 —
A1 as left multiplication by x. This is an isomorphism of right A-modules and, by
reversing the calculation above, we can verify that it also preserves the left-module
structure. O

Lemma 4.4.11. We can assume that ¢ fixes every stationary path in A.

Proof. Since ¢ is an automorphism of the path algebra A, it sends the set of stationary

paths {e1,...,e,} to another complete set of primitive orthogonal idempotents. By
[14, Theorem 3.4.1], these two sets are conjugated by some invertible element in A.
Thus, in view of Lemma 4.4.10, we may assume there is a permutation o of {1,...,n}

such that ¢(e;) = o) forall 1 <i <n.
Now, Corollary 4.4.6 and the previous discussion yield an isomorphism

eiAlm] = (Lv)(eiA) = ;A @4 (4A1)[m]

in DY(A). But ¢;A is a projective module and so we can work with the ordinary tensor
product, obtaining

eidlm] = (1A @a (pA1))[m] = (i - (441))[m] = d(ei) A[m] = e A[m].

This proves that the indecomposable projective A-modules ;A and £,(;) A are isomor-
phic for every 1 < i < n. Since A is basic, 0 must be the identity permutation. O

Lemma 4.4.12. We can take ¢ to be the identity.

Proof. By Lemma 4.4.10, we just have to prove that ¢ is an inner automorphism. We
can suppose ¢(g;) = ¢; for 1 < i < n by Lemma 4.4.11. As a result, for an arrow
a:i— jin @, we have

¢(a) = d(eiag)) = ¢(ei)p()¢(e;) = eip(a)e;.
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This means that ¢(«) is a linear combination of paths starting at i and ending at j.
But @ is a Dynkin quiver and, in particular, a tree, so there is only one such path: the
arrow « itself. Hence, for every arrow a € @1, there is A, € K such that ¢(«a) = A\qav.
Note that each A, is nonzero because ¢ is an automorphism.

For nonzero scalars ui, ..., u, € K, consider the element

X = 11 + p2ga + - - + pnen € A.

It is invertible with inverse

1 1 1
T =—1+—€&2+ -+ —¢€n.
H1 K2 Hn
We can then consider the inner automorphism ~,. It is easy to see that v,(g;) = &;
for all 1 <4 <n and that
1_ Ha
= —a«
K
for every arrow « : ¢ — j in ). Because the stationary paths and the arrows of )
generate the path algebra A, if we find the correct values of p1, ..., u, so that

V(@) = zax™

Ao = 22

Hj
for every arrow « : ¢ — j, then ¢ = ~,. With these conditions, observe that choosing
p; determines the value of yuj;, and vice versa. Since () is connected, this implies that
w1 should determine the value of uo, ..., u,. Finally, since @) is a tree, there is only
one path from any vertex to the vertex 1, thus, if we set pu; = 1, there is indeed

a unique and well-defined choice for the values of us,..., u, so that the conditions
above are satisfied. Therefore, ¢ is an inner automorphism of A, as claimed. O

This concludes the proof of Theorem 4.4.2!

Remark. Returning to the general case, suppose A is an algebra of finite global
dimension. As we saw above, in order to show that A is fractionally Calabi-Yau, it
is not enough to find integers m and ¢ such that (Lv)’ and [m] agree on all objects
of DP(A). Nonetheless, this already guarantees the existence of an automorphism
¢ : A — A and an isomorphism of functors

(L)" = [m] 0 ¢,

where ¢* = — ®k (¢A1). In this case, we say that A is twisted fractionally Calabi-Yau.
We remark that the map ¢ is not any automorphism of A. For example, if A is the
path algebra of a Dynkin quiver, we proved that ¢ has to be inner. More generally,
it is an open question whether ¢ has to be an element of finite order in the outer
automorphism group of A. This would imply that twisted fractionally Calabi-Yau
algebras are actually fractionally Calabi-Yau. We refer the reader to [19], where this
“twisted” definition was introduced, and to [12], where the authors expand on this
problem.

We finish the chapter with a result relating some of the concepts we explored
throughout the thesis.

Theorem 4.4.13. Let ) be a connected and acyclic quiver. The following assertions
are equivalent:

(1) @ is a Dynkin quiver.
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(2) KQ is of finite representation type.
(3) KQ is fractionally Calabi-Yau.
(4) The Coxeter transformation of K@ is an automorphism of finite order.

Proof. Let us start with the easy implications. The equivalence (1) <= (2) is
Gabriel’s theorem. The implication (1) == (3) is Theorem 4.4.2. By a similar
calculation as the one in the proof of Corollary 4.4.6, K@ is a fractionally Calabi-Yau
if and only if some power of the functor 7 is isomorphic to a shift. But 7 acts on
Ko(DP(KQ)) as the Coxeter transformation of KQ (Lemma 4.3.4), so (3) implies (4).
We just need to show that (4) implies (2). Suppose K@ is not of finite repre-
sentation type. By Auslander’s theorem, every connected component of I'(mod K Q)
has modules of arbitrarily high composition length, including its postprojective com-
ponent (which exists by Proposition 3.5.3). This implies that the 7-orbit of some
indecomposable projective module P is infinite and, moreover, that the set

{[v7'P] € Ko(KQ) | t > 0}

is also infinite. Hence, in D?(KQ), 77'P is always the complex 7 ¢P concentrated
in degree zero and its class in the Grothendieck group assumes infinitely many values
as we vary t. By Lemma 4.3.4, the Coxeter transformation of K@ is not of finite
order. O
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Appendix A

Dynkin diagrams and root systems

This first appendix collects the results on Dynkin diagrams and root systems that are
needed in Chapters 2 and 4. It is based on [3, Sections VII.2 to VIIL.4|, [8, Sections
4.5 and 4.6], [13], [20, Chapter III] and [21].

A.1 A classification theorem

Let G be a finite connected graph whose set of vertices is {1,...,n}. We allow
loops and multiple edges. Denote by n;; the number of edges between two vertices
i,j € {1,...,n}. The Tits form qg : Z" — Z of G is the quadratic form given by

n
gev) = vi— > nyvw,
=1

1<i<j<n

for v € Z". This agrees with the definition given in Section 2.1. There is also a
symmetric bilinear form (—, —)g : Z" x Z™ — Z defined by

(v,w)e = qc(v +w) — 96(v) — ga(w)

for v,w € Z™. Notice that qg(v) = %(U,U)G for v € Z™, and, if ey, ..., e, denote the

vectors in the canonical basis of Z", we have
—nyj if i # j,
(eie)a=9., ~ ... "
2—2n; ifi=j.
The goal of this section is to prove Theorem 2.1.4, which can be rephrased as
follows:

Theorem A.1.1. With the notation above, q¢ is positive definite if, and only if, G
is a Dynkin diagram of type A, D or E.

The idea of the proof is to study the more general case when q¢ is positive semi-
definite, that is, ¢g(v) > 0 for all v € Z". Some eztended Dynkin diagrams, also
called Euclidean diagrams, appear. They are the following:
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Each diagram is obtained from the corresponding Dynkin diagram by adjoining the
unfilled vertex in the picture. The only exception is Ag, which consists of a single ver-
tex and a loop. Note that A; has two vertices and two edges joining them. Moreover,
the number of vertices in each diagram is one more than the number in the subscript.

The labels in the vertices of the diagrams above are the coordinates of some special
vectors in Z"™. If G is one of these diagrams, enumerate its vertices and let § € Z" be
the vector whose i-th coordinate is the number in the picture associated to the vertex
1, for 1 < i < n. One can check that ¢ is a radical vector, that is, it is an element
of the radical:

rad(G) = {v e Z" | (v,w)g = 0,Yw € Z"}.

To see this, it suffices to verify that (,e;)q = 0 for all 1 < i < n. One can readily
check this for G = Ag or A;. In the other cases, there are no loops or multiple edges,
so (0,e;)c = 0 becomes equivalent to

=2 %

JEV(3)

where V(i) denotes the set of neighbour vertices of i. This can be easily verified for
each diagram.

Lemma A.1.2. Let G be a connected graph. If there is a nonzero v € rad(G)
with nonnegative coordinates, then qg is positive semi-definite. Furthermore, all
coordinates of v are nonzero and, for w € Z", we have

w €rad(G) <= qg(w) =0 <= w = lv for some A € Q.

Proof. For all 1 < ¢ < n, we have the following equality:

0= (v,ei)g = Zvj(ej,ei)g = (2 —2n;)v; Zmﬂv] (%)

j=1 JFi

If v; = 0 for some i, we would have Zj £ NijVj = 0 and, since the coordinates of
v are nonnegative, we would get v; = 0 for every neighbour j of i. However, G is
connected and so this would imply v = 0, a contradiction. Thus, the coordinates of v
are nonzero.
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For w € Z™, observe that

n

qc(w) = Z(l — Ny )w Z T Wi Wy

i=1 1<J
n
= E (2 —2n4) vl — E N jWiW;
=1 1<J
= g n”vj E N WiW;
i#] i<j
. 2 - 2
I O P L
- 2 2 . 2
. 2 (%5 'UZ’UJ [
1<j ¢ J
vivi (wp  wi\>
} : iUj i J
= N — - )
— 2 \vi v
1<)

where we used () in the third equality. Since the coordinates of v are positive,
this proves that gg is positive semi-definite. Moreover, gg(w) = 0 if and only if
w;/v; = w;/vj whenever i is a neighbour of j. Since G is connected, this equality
holds for every vertices 7 and j, so w = Av where A € Q is this common fraction.
Finally, any multiple of v is in rad(G) and, if w € rad(G), then ge(w) = 3(w, w)g =0
by definition, concluding the proof. O

Corollary A.1.3. If G is an Euclidean diagram of type 1&, D or IE, then qg is positive
semi-definite. If G is a Dynkin diagram of type A, D or E, then ¢g is positive definite.

Proof. In the first case, we can construct the radical vector § by using the labels in
the description of the Euclidean diagrams. Lemma A.1.2 implies that qg is positive
semi-definite and that every radical vector is an integer multiple of 4.

Now, suppose G is Dynkin of type A, D or E, and let G be the associated Euclidean
diagram. If v € Z", denote by ¥ € Z"t! the vector obtained by adjoining an extra
coordinate of value zero. It is easy to see that gg(v) = qG( v). If v # 0, then v is not
a multiple of § and so ¢g(v) = qz(v) > 0. Therefore, qg is positive definite. O

This proves one of the implications of Theorem A.1.1. We essentially studied
Fuclidean diagrams and used that the Dynkin diagrams are exactly their connected
and proper subgraphs. We will now explore the “dual” fact that Euclidean diagrams
appear inside every graph that is not Dynkin.

Lemma A.1.4. Let G be a connected graph. Either G is a Dynkin diagram of type
A, D or E, or there is an Euclidean diagram of type A, D or E which is a subgraph of
G. Both possibilities cannot occur simultaneously.

Proof. Suppose that G does not contain a copy of any of the Euclidean diagrams and
let us show that it is one of the Dynkin diagrams.

Since G does not contain Am for all m > 0, G does not have loops, multiple edges
or cycles. Therefore, G is a tree. Moreover, G has at most one branch point (i.e.,
a vertex with at least three edges), otherwise G would contain D, for some m > 5.
If it does not have, then G = A,, for some n > 1. If it does, this branch point has
degree three, otherwise G would contain ]13)4. Let a,b,c > 1 denote the length of each
branch and suppose a < b < ¢. Since G does not contain EG, we must have ¢ = 1. If
b =1, then G = D, for some n > 4, so we may suppose b > 2. If b > 3, then G would
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contain IE7, thus b = 2. We cannot have ¢ > 5, otherwise G would contain IEg. Hence,
c=2,3or 4 and G = Eg, E; or Eg, respectively.
The last statement of the lemma is clear. O

Lemma A.1.5. Let G and G’ be graphs with n and m vertices, respectively. Suppose
that G is a subgraph of G’. If there exists v € Z™ with positive coordinates such that
qc(v) = 0, then there is a nonzero v’ € Z™ with gg (v') < 0.

Proof. Denote by n;; the number of edges in G' between the vertices i,j € {1,...,n}.
Let m;; denote the analogous number for G’, where i,j € {1,...,m}. Note that
ni; < myj if 1 <4,5 <n. Let v’ € Z™ be the vector with vg =v; for 1 <i < n, and
v} =0 for n < i < m. We have

n

n
qe (V') = va - Z mMijviv; < va - Z n;jviv; = qg(v) =0,
i=1

1<i<j<n i=1 1<i<j<n

as desired. Observe that the first two sums go up to n because just the first n
coordinates of v are nonzero. O

Remark. If G is a proper subgraph of G, it is possible to find v" with gg (v") < 0.
If one of the inequalities n;; < my; is strict, we can take v” = v’ as above. If they are
all equalities, we must have n < m and we can find a vertex i of G’ which is not in G
but that connects to G. In this case, it is not hard to see that v = 2v' + ¢; works.

We conclude the proof of Theorem A.1.1.

Corollary A.1.6. If G is not a Dynkin diagram of type A, D or E, then g¢ is not
positive definite.

Proof. By Lemma A.1.4, G contains an Euclidean diagram as a subgraph. Since
Euclidean diagrams have radical vectors with positive coordinates, Lemma A.1.5 gives
us a nonzero v € Z" with gg(v) < 0. O

Remark. Using the previous remark, one can show that GG is an Euclidean diagram
of type A, D or E if, and only if, gqg is positive semi-definite but not positive definite.

A.2 Root systems

Following [20, Chapter III|, let us recall the definition of a root system. Let V' be
a finite-dimensional real vector space endowed with a positive definite symmetric

bilinear form (—,—) : V' x V' — R. For any nonzero vector v € V, we have the map
oy : V. = V defined by

2(w,v)v
(v,v)

for w € V. This is a reflection, that is, an involution on V' which fixes the hyperplane
orthogonal to v and sends v to —wv.

oy(w) =w —

Definition A.2.1. With the notation above, a subset ® C V is called a root system
in V' if it satisfies the following conditions:

(R1) @ is finite, spans V' and does not contain zero.

(R2) If v € ®, the only multiples of v in ® are +v.
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(R3) If v € ®, the reflection o, leaves ® invariant.

(R4) If v,w € @, then

Now, let G be a Dynkin diagram of type A, D or E, with n vertices. Following
Definition 2.3.1, the set of roots of ¢g is

ds = {U ez ‘ q(;(v) = 1}.

The goal of this section is to study this set from the perspective of the theory of root
systems.

The first thing to expect from the names is that ®¢ is a root system. For this
purpose, we will consider ®; as a subset of R"™. Note that gz and (—, —)g can be
naturally extended to a quadratic form and to a symmetric bilinear form on R™,
respectively. Changing Z and Q to R in the previous chapter, the proofs of Lemma
A.1.2 and Corollary A.1.3 still work, so ¢¢ and thus (—, —)g are positive definite.

Proposition A.2.2. The set of roots g is a root system in R"™ endowed with the
bilinear form (—, —)g.

Proof. For (R1), it is immediate that ® does not contain zero. Note that the vectors
e1,...,e, from the canonical basis of R™ are in ®¢, so the roots span R™. Let us
prove that ®¢ is finite. Since the unit sphere is a compact subset of R™ and gq is
continuous, gg attains a minimum A € R over this set. We have A\ > 0 because q¢ is
positive definite on R"”. Thus, if v € & has Euclidean norm ||v||, then

v qc(v) 1 1
ASqG<>= = b e L
oll) = Tol? ~ ol i

This shows that ®¢ is a bounded set of R™ and, since its vectors have integer coordi-
nates, it must be finite.
For (R2), we have

qa(W) = XNqg(v) = N2

for v € &g and A € R. Hence, \v € ®¢ if and only if A = +1. Moreover, if v € ®g,
then
2(w,v)e  2(w,v)a
(v,v)a 2qa(v)
which is an integer for every w € Z", so (R4) holds. This also shows that, for v € ®¢,
the reflection o, leaves Z™ invariant. Therefore, since reflections preserve the bilinear
form (—, —)q, (R3) follows as well. O

= (w,v)q,

In fact, it turns out that ®¢ is an irreducible root system. To see this, we need a
lemma.

Lemma A.2.3. If v € $g, then the coordinates of v are either all nonnegative or all
nonpositive.

Proof. Since v # 0 and —v € @y, we may assume v has at least one positive coor-
dinate. Let v/ € Z™ be the vector whose coordinates are the absolute values of the
coordinates of v. Looking at the signs appearing in the definition of gg, we can see
that ¢g(v") < gg(v), and the inequality is strict if v has some negative coordinate.
But ¢g(v) =1 and gg(v') is a positive integer, so the inequality is in fact an equality
and v has no negative coordinates. O



80 Appendix A. Dynkin diagrams and root systems

In other words, every element of @ is a linear combination of the canonical vectors
e1,...,en, with integral coefficients which are all nonnegative or all nonpositive. This
shows that {e1,...,e,} is a base of the root system ®;. Thus, the Cartan matrix of
O is the n x n matrix whose entry (4, 7) is

2 if 1 = j,
2(61'7 ej)G

oo = (ej,ej)g = ¢ —1 if i is connected to j in G,
2 €j

0 otherwise,
where we used that G has no loops or multiple edges. This is exactly the Cartan

matrix of the irreducible root system with Dynkin diagram G! Since root systems are
determined by their Cartan matrices, we have:

Theorem A.2.4. If G is a Dynkin diagram of type A, D or E, then &g is the
irreducible root system corresponding to G.

Proof. See |20, Sections 10 and 11| for the definitions and results used in the argu-
mentation above. O

As a consequence we get the exact number of elements in ®g. It is given by the
following table:

G A, D, E¢ | Er | Eg
[Ba] | n(n+ 1) | 2n(n —1) | 72 | 126 | 240

There is also another way of obtaining these numbers. We recall that the Weyl
group W of ® is the subgroup of the group of linear automorphisms of R™ generated
by the reflections o, for v € ®¢. Since these reflections leave ®¢ invariant and this
set spans R", it follows that W is isomorphic to a subgroup of the symmetric group
on ®¢, hence it is finite.

Let A be a base for ®¢ (for example, the canonical basis of R™) and enumerate
its elements as si,...,s,. The reflections o; = o, for 1 < i < n are the simple
reflections of W (with respect to A). The product

01090, €W

is called a Coxeter element of W. This definition depends on the choice of A as
well as on the way A is numbered. However, all Coxeter elements are conjugated (see
[21, Section 3.16]) and so their order is always the same. It is usually denoted by h
and called the Coxeter number of ®g.

Proposition A.2.5. We have |®¢| = nh.
Proof. See |21, Section 3.18|. O
Another useful property about Coxeter elements is the following:

Proposition A.2.6. The Weyl group W contains —idg~ if, and only if, G = A, D,
with n even, E7 or Eg. In this case, h is even and, for any Coxeter element ¢ € W, we

have ¢"/2 = —idRgn.

Proof. See |21, Sections 3.7 and 3.19]. O]
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A.3 The Coxeter transformation

Let @ be a Dynkin quiver. We defined in Section 1.4 the Coxeter transformation
ckq  Ko(KQ) — Ko(KQ). We will see in this section the reason for this name: cgg
can be seen as a Coxeter element of the Weyl group associated to Q.

Let us fix some hypotheses and notations. We suppose that Qo = {1,...,n} and
that this is an admissible numbering, that is, if there is an arrow ¢ — 7, then
i > j. Since @ is acyclic, it is possible to find such a numbering. Denote by n;; the
number of arrows from ¢ to j or from j to ¢. Observe that this number is either 1 or
0 depending on whether ¢ and j are connected or not.

In Section A.2, we saw that the set of roots of gq is the irreducible root system
associated to ). It has a base consisting of the vectors eq,...,e, of the canonical
basis of R"™. Let o1,...,0, be the corresponding simple reflections in the Weyl group,
and consider the Coxeter element given by

C=0p-"-0201.

Our goal is to show that the matrix of ¢ in the canonical basis is the Coxeter matrix
of K@), that is, it is _C%QCI_(EJ where Ck denotes the Cartan matrix of KQ (in the
sense of Section 1.4).

Lemma A.3.1. Let 1 < ¢ < n. The matrix of o; in the canonical basis is the identity
matrix, except that we replace the i-th row by the vector

v = (M1, M2y s M1, =1, M1, -, M)

Proof. We have

() =e—(eredgei=1 ¢ MiZ7
oile;) = e; — (e, e:)0ei = S
B / Jr5Q% ej +nie; if i # .

The lemma follows. O

Lemma A.3.2. If we write Cxg = (7Vij)1<i,j<n, then Ckg is upper unitriangular and

we have
Yij = E YikNkj = § ik Vkj
1<k<j i<k<n

for i < j.

Proof. Recall that the columns of Cxg are the dimension vectors of the indecompos-
able projective K@Q-modules. Thus, ;; is the multiplicity of the simple S(7) in the
indecomposable projective P(j). By Lemma 1.3.6, this is the number of paths in @
from j to ¢. If ¢ > j, then there are no such paths because we fixed an admissible
numbering in the beginning. If ¢ = j, then there is only the stationary path and
vii = 1. This shows that Uk is upper unitriangular.

Now, suppose i < j. Every path from j to ¢ is the concatenation of some arrow
J — k with a path from k to i. Note that k is a successor of j if, and only if, ng; =1
and j > k. This shows that ~;; equals the first sum above. A similar argument proves
the second equality, but this time we consider a path from j to i as the concatenation
of some path from j to a predecessor k of ¢ and the arrow k — 3. O

Proposition A.3.3. The matrix of the Coxeter element ¢ in the canonical basis of
R™ is the Coxeter matrix of KQ.
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Proof. Regard the simple reflections o; as matrices. We have to prove that
_ _ t -1
C=0p- 01 = _CKQCKQ’

or, equivalently,
_C%Q =o0n - chKQ'

By Lemma A.3.1, for any matrix M, o; M is exactly M except that we put the vector
v; M in the i-th row. Therefore, 01Ckg is obtained by replacing the first row of Cxq

with v1Ckq. But o9,...,0, will not change the first row of 01Ck ¢, so this product
should be the matrix C; whose first row is the first row of —C’%Q and whose other
rows coincide with those of C'xq. In the same fashion, o3, ..., 0, will not change the

first two rows of 0201Ck and this product should be the matrix Cy whose first two
rows are the first two rows of —C%Q and whose other rows coincide with those of
Ckq. We can continue in this way. In the end, we have to prove the following. For
1 < i <n, let C;_1 denote the matrix whose first ¢ — 1 rows are the first ¢ — 1 rows
of —C’%Q and whose last n — 4 + 1 rows are the last n — i + 1 rows of Cxg. We just
have to verify that v;C;_1 is the i-th row of —C%Q.

Let 1 < j <n and write Ckg as in Lemma A.3.2. The j-th entry of v;C;_; is

> ik (=k) | D g+ Y g

1<k<i i<k<n

We have three cases to consider. First, suppose ¢ < j. In the first sum, we always
have k < i < j, so 5 = 0 as Ck( is upper triangular. On the other hand, the second
sum equals «;; by Lemma A.3.2, thus the expression above is zero. Note that this
is indeed the entry (i,j) of —C’%Q because this is a lower triangular matrix. Now,
suppose ¢ > j. This time, the triangularity implies that v;; and the second sum are
zero. We are left with the first sum, which equals —v;; by the first equality in Lemma
A.3.2, and this is indeed the entry (i, j) of —C};{Q. Finally, if ¢ = j, both sums are zero
and we are left with —;;, which is indeed the entry (i,%) of —Cﬁ{Q. This completes
the proof. O

We get an important corollary.

Corollary A.3.4. The Coxeter transformation cxqg : Ko(KQ) — Ko(KQ) is an
automorphism of finite order. Its order is the Coxeter number of the root system
associated to the Dynkin diagram Q.
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Appendix B

Derived categories

This second appendix is a quick review of the theory of derived categories and con-
tains the definitions and results used in Chapter 4. No proofs are given, but a good
treatment of the subject can be found in [16, Chapter III], [22], |26, Chapter 4], |28,
Chapter 10| and [29, Chapter 3].

Remark. We only deal with the derived category of mod A, where A is a finite-
dimensional K-algebra. Hence, from now on, A denotes such an algebra and all
A-modules are of finite dimension. Although we present the subject in this context,
most of the exposition can be adapted without effort for arbitrary abelian categories.

B.1 The definition

We start with some central concepts in homological algebra. A chain complex X of
A-modules is a sequence (X, )nez of A-modules together with maps d,, : X,, — X,,—1,
called the differential maps, such that d, od, 1 = 0 for every n € Z. We can depict
X as a diagram:

dn+1 dn

X= - — Xun Xn Xp 1 —— -+
A morphism of complexes f: X — Y is a sequence of A-module homomorphisms
fn : X5 = Y, which commute with the differential maps, that is, fn,1d§ = d}; fn for
all n € Z. It is easy to see that chain complexes and morphisms between them form
a category, which we denote by C(A). It is an abelian K-category (cf. |28, Section
1.2]).

A chain complex X is bounded on the right if X,, = 0 for n < 0. Similarly,
X is bounded on the left if X, = 0 for n > 0. We say that X is bounded
if it is bounded on both sides. These restrictions define three full subcategories of
C(A): C~(A), C*t(A) and Cb(A), respectively. One should think for example that the
symbol “—" corresponds to “left”, because complexes that are bounded on the right are
concentrated on the left. We are mostly interested in C?(A), but it is worth presenting
the other categories too.

By the condition imposed on the differential maps, note that imd,, C kerd,, for
all n € Z. Thus, it makes sense to study the homology of a complex X in degree n,

which is the quotient
kerd,

im dn+1 .

H,(X) =

It is not hard to verify that it defines a K-linear functor H, : C(A) — mod A. In this
context, we say that a morphism of complexes f : X — Y is a quasi-isomorphism
if H,(f): Hy(X) — H,(Y) is an isomorphism of A-modules for all n € Z.
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Many constructions in homological algebra, such as the Ext and Tor functors, are
defined as the homology of certain complexes. However, instead of taking homology,
it would be convenient to work with the complexes themselves. In this case, we would
like to identify complexes having the same homology or, more precisely, we wish quasi-
isomorphisms were true isomorphisms. This motivates' the following definition:

Definition B.1.1. The derived category D(A) of mod A is the localization of
C(A) with respect to the collection of quasi-isomorphisms. In other words, D(A) is a
category together with a functor @ : C(A) — D(A) such that:

e Q(f) is an isomorphism for every quasi-isomorphism f in C(A);

e For every functor F' : C(A) — C which sends quasi-isomorphisms to isomor-
phisms, there exists a unique functor G : D(A) — C such that the triangle

commutes.
We can similarly define the bounded versions D~ (A), DT (A) and D?(A).

It is not clear that the derived category should exist. A naive construction is to
take the objects of D(A) to be the same as the objects of C(A), formally add the
inverses of the quasi-isomorphisms and consider morphisms in D(A) to be “zigzags”
between these formal inverses and usual morphisms in C(A) (cf. [16, Section III.2]
or [26, Section 1.1]). However, this raises some delicate set-theoretic issues (see the
remarks on [28, Section 10.3]) and it is not convenient for computations.

Another way of constructing D(A) is by introducing an intermediate category.
The homotopy category K(A) is the quotient of C(A) by the ideal formed by the
null-homotopic maps, that is, morphisms of complexes f : X — Y for which there
exists a sequence of maps s, : X;, = Yp4+1 such that

Y X
In = dn+13n + sp-1d,,

for all n € Z. This means that the objects of IC(A) are the same as the objects of C(A),
but we quotient each Hom-space by the subspace generated by the null-homotopic
maps. Thus, two maps in C(A) become the same in K(A) if they are homotopic,
i.e., their difference is of the form given above. Note that an isomorphism in K(A)
comes from a morphism f : X — Y in C(A) which is a homotopy equivalence:
there exists a morphism ¢ : Y — X such that gf and fg are homotopic to idx and
idy, respectively.

One can check that homotopic maps induce the same map on homology, so we get
a well-defined functor H,, : (A) — mod A for every n € Z. Hence, it still makes sense
to talk about quasi-isomorphisms in the homotopy category and, moreover, homotopy
equivalences in C(A) are quasi-isomorphisms. Now, by [28, Proposition 10.1.2], K(A) is
the localization of C(A) with respect to the class of homotopy equivalences. Therefore,
we can see C(A) as an intermediate between C(A) and D(A), and the localization of
K(A) with respect to quasi-isomorphisms should be equivalent to D(A) (if it exists).

'For a more convincing and detailed motivation, see [16, Section IT1.1] and [22].
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Quasi-isomorphisms in K(A) are better behaved and form what is called a mul-
tiplicative system. This allows us to finally construct D(A) using a calculus of
fractions, which generalizes Ore localization for noncommutative rings to categories.
More explicitly, the objects in D(A) are chain complexes of A-modules and a mor-
phism ¢ : X — Y is the equivalence class (for a certain equivalence relation) of a

right fraction
Z
N
X Y

where f and s are morphisms in K(A) and, in addition, s is a quasi-isomorphism.
Viewing f and s as morphisms in D(A) through the localization functor IC(A) —
D(A), we have o = fs~!, explaining why ¢ is called a “right fraction”. A similar
description with left fractions yields an equivalent category. We will not need to know
how to work with the calculus of fractions, but more details can be found in [16,
Section III.2], |28, Section 10.3] and [29, Section 3.5.3].

The derived category inherits some properties of (A). For example, it is also a
K-linear category. Moreover, finite direct sums in D(A) are computed in the same
way as in C(A) and K(A), a property that we use in Proposition 4.1.1. This follows
from the fact that the localization functor K(A) — D(A) is additive (see the end of
[16, Section II1.4] and [28, Corollary 10.3.11]). In the next section, we also comment
about another structure of K(A) which descends to D(A).

Remark. We also have the categories K~ (A), LT (A) and K?(A), and they give us an
analogous description of D~(A), DT (A) and D°(A).

B.2 Triangulated categories
Suppose we have a short exact sequence

f

0 X y 45 7 0 (%)

in C(A). It is a well-known result in homological algebra that we get a long exact
sequence in homology:

cor — Hpp1(Z) — Hp(X) — Hp(Y) — Hy(Z) — Hp (X)) — -+

In the philosophy of the previous section, we may wonder if this long exact sequence
comes somehow from a sequence of complexes, because then we could work with it
instead of having to take homology. For this purpose, we introduce some constructions.
For an object X € C(A), we define the shift of X to be the chain complex X|1]
with
X[]p =X, 1 and XM= _—g¥X
for n € Z. This defines an isomorphism [1] : C(A) — C(A) called the shift functor

(also known as the translation or suspension functor). For n € Z, [n| denotes the
n-th power of this functor.
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The cone of a morphism f : X — Y in C(A) is the chain complex cone(f) defined
by!

_ X
cone(f)n = X 1 @Yy and doned) o (1
fnfl dn

for n € Z. Observe that cone(f) is almost the same as the direct sum X[1] @Y, but
the data of the morphism f appear in the differential maps. Even so, we still have a
short exact Sequence2

0 —— Y —" cone(f) —— X[1] 0,

which induces the long exact sequence

57171

e Ho (X)) 3 H (V) — Ha(cone(f)) — Ho(X[1)"S Hy (V) — - .

We have H,4+1(X[1]) & H,(X) and one can check that the connecting morphism
On + Hp(X) — Hyp(Y) is exactly H,(f). Therefore, this long exact sequence can be
obtained from the sequence

f

L Ty i cone(f) —Ts X1

M,

()

by taking Hy.

Now, suppose the map f: X — Y fits into the short exact sequence (x) from the
first paragraph. In this case, there is a quasi-isomorphism ¢ : cone(f) — Z, so the
long exact sequence above is isomorphic to the one we get from (). This implies that
the sequence (%) is the replacement we were searching for! In D(A), we can identify
cone(f) and Z via ¢, so we are working with a sequence of the form

h[—1] f fI1]

X

y 45 7z My X[ -
which extends (x). Such sequences satisfy some special properties in the derived
category that turn it into a triangulated category. Let us define what this means.

Let C be an additive category and T : C — C be an isomorphism?® of categories. A
triangle is a diagram in C of the form

X Y > Z TX.

As before, we can apply successive powers of T' to obtain an infinite sequence, but
working with these three maps is enough. A morphism of triangles is a commuta-
tive diagram:

X > Y Z y TX
A A S
X' > Y’ » 7' TX'

The triangles in the rows are isomorphic if «, 5 and v are isomorphisms. Suppose
we have also chosen a class of triangles in C, which we call the class of distinguished

1Be careful when consulting the references because some authors have different conventions for
the signs in the differential maps. We are following [29, Section 3.5.2].

2For this property of the cone and the subsequent ones, see [28, Section 1.5].

3Some authors consider the more general case where T is just an autoequivalence.
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triangles. This data defines a triangulated category if the following four axioms
are true:

(TR1) A triangle which is isomorphic to a distinguished triangle is itself distinguished.
Furthermore, the triangle

x ., x 0 TX

is always distinguished and any morphism f : X — Y can be completed to a
distinguished triangle

(TR2) The triangle

x 1oy 9,7, px

is distinguished if and only if the triangle

—-Tf

y 2z -hyTXx TY

is distinguished.
(TR3) For any commutative diagram

X Y Z TX

S A

X' Y’ Z' TX'
whose rows are distinguished triangles, there is a morphism v : Z — Z’ such
that

X Y Z TX

O‘l ﬂl v i Tal

X' Y’ z' TX'
cominutes.

(TR4) Suppose we have three distinguished triangles:

x, - x, 7 TX,
Xy —2 5 X5 Zs T X,
X, — X, 7 TX,

If h = go f, then there is a distinguished triangle

Zl Z2 ZS TZl
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such that the following diagram' commutes:
h ——m = -
/\ /_\ e - S~4
X3 X3 Zs TZ,
NS N T NS
Xo Zo TX,
\ /,7 \ /
Z TX,
\/,

The homotopy category K(A) together with the shift becomes a triangulated cat-
egory if we define the distinguished triangles to be those isomorphic (in K£(A)) to a
triangle of the form

Xty iy cone(f) —/— X[1],

where ¢ and 7 are the maps from before (|29, Proposition 3.5.25]). This structure
descends to the derived category D(A) through the localization functor, and the dis-
tinguished triangles become those isomorphic (but now in D(A)) to a triangle of the
previous form (|29, Proposition 3.5.40]).

As we discussed in the beginning of this section, any short exact sequence in C(A)
defines a distinguished triangle in D(A). Conversely, every distinguished triangle
comes from such a sequence: just take the short exact sequence relating the cone
of f: X — Y, Y and X[1] that we saw before. Therefore, every distinguished
triangle in D(A) should induce a long exact sequence after taking homology. This
is, for example, |16, Section III.3, Theorem 6|. In the terminology of triangulated
categories, this means that the functors H,, are homological.

Remark. The triangulated structure exists and it works in the same way for the
bounded versions of the homotopy and the derived categories.
B.3 Identifying some categories

Recall that we can view mod A as a full subcategory of C(A). To do so, we consider
the functor mod A — C(A) which sends an A-module M to the stalk complex M
concentrated in degree zero:

0 M 0

This is a fully faithful functor whose essential image consists of the complexes con-
centrated in degree zero. Composing it with the localization functor C(A) — D(A),
we get a functor from mod A to D(A) which should also be an embedding.

Proposition B.3.1 (|16, Section II1.5, Proposition 2|). The inclusion mod A — D(A)
in degree zero is indeed a fully faithful functor. Its essential image consists of the
complexes whose homology is concentrated in degree zero.

We can include mod A in any degree and the same result holds. Remarkably, these
copies of mod A inside D(A) encode the Ext functors.

!This diagram can be drawn on an octahedron (cf. [29, Section 3.4]), so this is called the
“octahedral axiom”.
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Proposition B.3.2 (|26, Proposition 4.2.11]'). If M and N are A-modules viewed
as complexes concentrated in degree zero, then

Homp ) (M, Nln]) = {0 \ e
Ext(M,N) ifn>0.

The copies of mod A in C(A) are made from stalk complexes concentrated in
some degree. When we pass to the derived category, we relax this condition and
only need the homology to be concentrated. In a similar way, the bounded versions
C~(A), Ct(A) and C’(A) are obtained from C(A) by imposing some restrictions on
the terms of its complexes, hence we can expect that D~ (A), DT (A) and D°(A) come
from D(A) by the same restriction in homology. Note that we cannot immediately
see these categories as subcategories of D(A) but, for x = —, +,b, the localization
property gives a functor D*(A) — D(A) induced by the inclusion C*(A) — C(A).

Proposition B.3.3 (|26, Lemma 4.1.16 and Section 4.2]). For x = —, +, b, the canon-
ical functor D*(A) — D(A) is fully faithful. Its essential image Z* is given by:

I~ ={X € D(A) | H\(X) = 0 for n < 0},
It ={X € D(A) | Hy(X) = 0 for n > 0},
7% = {X € D(A) | H,(X) = 0 for almost all n}.

Remark. In some cases, we will use the identifications above without mentioning.

We conclude the section by discussing an alternative construction of the derived
category in the bounded case. It is possible to avoid the calculus of fractions by
describing it as a particular homotopy category. For this reason, we define K(proj A)
and IC(inj A) to be the full subcategories of K(A) whose objects are chain complexes of
projective and injective A-modules, respectively. Since the definition of the homotopy
category only depends on the additive structure of the initial category, we can indeed
view these new subcategories as the homotopy categories of proj A and inj A. Again,
we can also define their bounded variants.

Lemma B.3.4 (|28, Corollary 10.4.7]). If P € K~ (proj A) and I € K™ (inj A), then
the natural maps

HOmK(A) (P, X) — HOmD(A) (P, X) and HomIC(A) (X, I) — HOmD(A) (X, I)
induced by the localization functor are isomorphisms for all X € K(A).

This lemma implies that the composition of the inclusion K~ (proj A) — K~ (A)
with the localization functor K~ (A) — D~ (A) is fully faithful. Similarly, we have
a fully faithful functor £t (inj A) — DT (A). Both of them are essentially surjective!
This follows from the fact that any complex (bounded on the correct side) has a projec-
tive or injective resolution (see [16, Section IIL.5, Subsection 25| and [29, Proposition
3.5.43]). As a consequence, we have the following result:

Proposition B.3.5. The canonical functors K~ (proj A) — D~ (A) and K (inj A) —
DT (A) are equivalences.

Remark. Lemma B.3.4 also gives fully faithful functors K?(proj A) — D°(A) and
KCt(inj A) — DP(A). However, they are not necessarily essentially surjective because

1Only the second proof in this book addresses the case n < 0.
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bounded complexes can have unbounded projective or injective resolutions. One way
to guarantee that the resolutions are finite is to assume that A is of finite global di-
mension. If we do not want to assume hypotheses on A, we have to introduce the
full subcategories K*(proj A) and K(inj A) of K~ (proj A) and Kt (inj A), respec-
tively, whose complexes have bounded homology. In this case, we do get equivalences
Kb (proj A) — DP(A) and KTb(inj A) — DP(A).

B.4 Derived functors

Let B be another K-algebra of finite dimension. We are now interested in extending
a K-linear functor F' : mod A — mod B to the derived setting. The first step is to
extend F to a functor C(A) — C(B) and then to a functor K(A) — K(B). This can
be done easily by applying F' in every term of a complex. Since the constructions
of the category of chain complexes and the homotopy category only depend on the
additive structure of mod A and mod B, these extensions are well-defined. The new
functor F': KL(A) — K(B) is even a triangulated functor, that is, it commutes with
the shift functor and sends distinguished triangles to distinguished triangles.

The problem arises when we want to pass from the homotopy category to the
derived category. We would like to find a functor F’ : D(A) — D(B) such that

K(4) —£— K(B)
QAl lQB
(B)

commutes, where the vertical arrows are the localization functors. Due to the universal
property of the localization of categories, this can only happen if F' sends quasi-
isomorphisms to quasi-isomorphisms. In most cases, this condition is too restrictive.
We can relax it if we just search for a functor F’ such that the square above commutes
up to a natural transformation:

This diagram just symbolizes that there is a natural transformation from F’ o Q4 to
QpoF. We can also consider natural transformations in the other direction. In order
to get a unique extension, we can try to impose that F” satisfy some sort of universal
property, so that it is the functor “closest” to making the square truly commute. This
motivates the following definition:

Definition B.4.1. Let x = (),—, 4+ or b. Let F': K*(A) — K(B) be a triangulated
functor.

(1) A left derived functor of F is a functor LF' : D*(A) — D(B) together with
a natural transformation £ : LF o Q4 — @p o F which is universal in the
following sense: if F' : D*(A) — D(B) is another functor equipped with a
natural transformation ¢ : I/ o Q4 — Qp o F, then there is a unique natural
transformation 7 : I/ — LLF such that {(x = £x o Nga(x) for all X € K£*(A).
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(2) A right derived functor of F' is a functor RF : D*(A) — D(B) together
with a natural transformation & : Qg o ' — RF o Q4 which is universal in
the following sense: if F' : D*(A) — D(B) is another functor equipped with a
natural transformation ¢ : Qg o F' — F' o (Q4, then there is a unique natural
transformation 7 : RF — F’ such that (x = Noa(x) ©&x for all X € K*(A).

If they exist, these functors are unique up to a natural isomorphism.

In general, the derived functor of a functor defined over the whole category IC(A)
does not exist. This is the reason for restricting F' to one of the subcategories £~ (A),
K*(A) or K?(A) in the definition above. In this case, we have the following result.

Theorem B.4.2 ([16, Section III.6, Theorem 8|, |28, Theorem 10.5.6]). Suppose
F: K~ (A) — K(B) is a triangulated functor. The left derived functor LF' : D~ (A) —
D(B) exists, it is triangulated and it is given by the composition

D—(4) % K~ (projA) —E k(B) -2Z D(B),

where G is a quasi-inverse for the canonical equivalence K~ (proj A) — D~ (A). Dually,
if F: Kt(A) — K(B) is a triangulated functor, then the right derived functor RF :
DT (A) — D(B) exists, it is triangulated and it is given by the composition

DH(A) —S Kt(injA) —E K(B) -22 D(B),

where G is a quasi-inverse for the canonical equivalence KT (inj A) — DT (A).

For a complex X, finding G(X) with G as above amounts to choosing an object
in K~ (proj A) or in K (inj A) which is isomorphic to X in the derived category. In
other words, G(X) is a projective or an injective resolution of X. This description
allows us to view the classical derived functors of homological algebra, such as the
Ext and Tor functors, as derived functors in the sense we defined here.

Remark. We have to pay attention again when considering D’(A). If we start with
a functor F': K(A) — K(B), then an analog of the previous theorem constructs LF
and RF over DP(A), where we use quasi-inverses for the equivalences K ™°(proj A) —
Db(A) and KT°(inj A) — DP(A). However, if F is defined only over K’(A), we cannot
do this in general. One case where it works is when A is of finite global dimension,
because then these equivalences have K°(A) as a domain.

To conclude, we discuss about a particular case of derived functor that we use
in Section 4.4. Let X be a complex of right A-modules and Y a complex of left
A-modules, both of them bounded on the right. We can define their tensor product
X ®4Y, which is a complex of K-vector spaces bounded on the right (see [8, Section
2.7]). Fixing X, we get a functor X ® 4 — : C~ (A°?) — C~(K) which can be extended
to the respective homotopy categories. By Theorem B.4.2, it has a left derived functor

X @% —: D7 (A?) — D (K).
Analogously, we also have the left derived functor

—- %Y : D (4) — D (K).
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One can show (|28, Theorem 10.6.3|) that these two functors are compatible and can
be assembled into a single bifunctor

— @Y% — D7 (A) x D™ (A?) — D (K),

which is called the derived tensor product. For complexes X € D™ (A) and Y €
D~ (A°P), it can be computed in two ways:

XY 2pX®@4Y 2 X ®4pY,

where pX and pY denote projective resolutions of X and Y, respectively.

We can upgrade the derived tensor product to complexes of bimodules in the
following way. Let B; and Bs be two K-algebras of finite dimension. Suppose X is
a complex of Bi-A-bimodules and Y is a complex of A-Bs-bimodules, both of them
bounded on the right. Using the A-module structure, we can form the tensor product
X ®4 Y. This naturally becomes a complex of Bi-Bs-bimodules using the extra
structure on X and Y. In a similar way, it is also possible to see the derived tensor
product X ®4 Y as a complex of By-By-bimodules ([28, Exercise 10.6.2]). Identifying
Bj-A-bimodules with modules over By* @k A (and similarly for the other bimodule
structures), we get a bifunctor

—@% - DT(BP @K A) x D™ (AP @ By) — D (BY® @k Ba).

Remark. If we want to compute the complex X ®HA Y using this new construction,
we have to find, in principle, a projective resolution of X or of Y as complexes of
A-modules, and not as complexes of bimodules. It is only after forming the usual
derived tensor product that we add the bimodule structure. However, in our context,
taking resolutions as complexes of bimodules also works and, in this way, it is easier to
see how to define the extra structure (see Proposition 3.7.16 in [29] and the discussion
that precedes it).

Finally, the derived tensor product is associative: if we have complexes X €
D~ (A),Y €e D7 (A® ®k B) and Z € D~ (B°P), then there is a natural isomorphism

X% (Yeh2) 2 (X eyv) ez

For a proof, see |28, Example 10.8.1 and Theorem 10.8.2]. This isomorphism also
holds if X and Z are complexes of bimodules.
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