A categorification of combinatorial Auslander–Reiten quivers

Ricardo Canesin

Demi-journée de l'équipe GRG

June 6, 2024

Motivation

Let $\mathfrak g$ be a finite-dimensional complex simple Lie algebra and let $U_q(\widehat{\mathfrak g})$ be its quantum affine algebra.

If $\mathfrak g$ is of type ADE, then the representation theory of $U_q(\widehat{\mathfrak g})$ is intimately connected with the representation theory of a Dynkin quiver Q of the same type (cf. Hernandez-Leclerc, 2015).

For general type, the combinatorics coming from the AR theory of $\operatorname{Rep}(Q)$ and $\mathcal{D}^b(\operatorname{Rep}(Q))$ have been generalized to study $U_q(\widehat{\mathfrak{g}})$.

- Oh-Suh, 2019: Introduced combinatorial AR quivers, a generalization of the AR quiver of a Dynkin quiver.
- Fujita-Oh, 2021: Introduced Q-data, a generalization of a Dynkin quiver with height function.

Problem

Can we categorify these combinatorics?

Notation for root systems

- Δ: Dynkin diagram of type ADE.
- lacksquare R: irreducible root system with Dynkin diagram Δ .
- \bullet $\alpha_i \in \mathsf{R}$: simple root for $i \in \Delta_0$.
- W: Weyl group.
- $s_i \in W$: simple reflection for $i \in \Delta_0$.
- $w_0 \in W$: longest element.

We have an involution $i\mapsto i^*$ on Δ_0 determined by $w_0(\alpha_i)=-\alpha_{i^*}$.

- $\underline{i} = (i_1, \dots, i_N) \in \Delta_0^N$: a fixed reduced word for w_0 .
- $\widehat{\underline{i}} = (i_k)_{k \in \mathbb{Z}}$: extension of \underline{i} by imposing $i_{k+N} = i_k^*$.

Combinatorial Auslander-Reiten quivers

Definition [Oh-Suh, 2019]

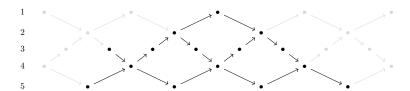
The combinatorial repetition quiver $\widehat{\Upsilon}_i$ is the quiver where:

- the vertex set is \mathbb{Z} .
- there is an arrow from k to l if k > l, i_k is adjacent to i_l in Δ , and there is no index l < j < k such that $i_j = i_l$ or $i_j = i_k$.

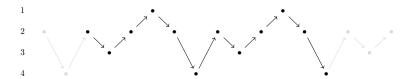
The combinatorial AR quiver $\Upsilon_{\underline{i}}$ is the full subquiver of $\widehat{\Upsilon}_{\underline{i}}$ with vertex set $\{1, 2, \dots, N\}$, where N is the length of w_0 .

These definitions depend only on the commutation class of \underline{i} .

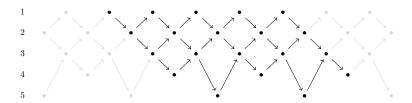
 $\Delta = A_5$ and $\underline{i} = (5, 4, 3, 2, 5, 3, 1, 4, 3, 2, 5, 3, 4, 3, 5)$:



 $\Delta = D_4$ and $\underline{i} = (4, 2, 1, 2, 3, 2, 4, 2, 1, 2, 3, 2)$:



 ${\color{red} \bullet} \ \Delta = \mathsf{D}_5 \ \text{and} \ \underline{\pmb{i}} = (4,3,2,1,5,3,2,1,4,3,2,1,5,3,2,1,4,3,2,1) :$



Assigning roots

We define the coordinate map $\rho: (\widehat{\Upsilon}_{\underline{i}})_0 \to \mathsf{R}$ by

$$\rho(k) = \begin{cases} s_{i_1} s_{i_2} \cdots s_{i_{k-1}}(\alpha_{i_k}) & \text{if } k \ge 1, \\ -s_{i_0} s_{i_{-1}} \cdots s_{i_{k+1}}(\alpha_{i_k}) & \text{if } k \le 0. \end{cases}$$

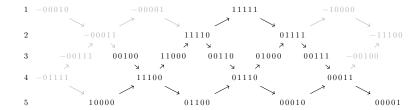
It restricts to a bijection between the vertex set of $\Upsilon_{\underline{i}}$ and the set of positive roots in R.

Theorem [Bédard, 1999; Oh-Suh, 2019]

If \underline{i} is a reduced word for w_0 which is also a source sequence for an orientation Q of Δ , then $\Upsilon_{\underline{i}}$ is isomorphic to the AR quiver of the path algebra of Q. This isomorphism can be taken in such a way that the bijection above corresponds to the dimension vector map.

Example: the coordinate map

For the previous example in type A_5 , the coordinate map is given as follows:



Mesh-additivity

Take a vertex $x \in (\widehat{\Upsilon}_{\underline{i}})_0 = \mathbb{Z}$.

- The translation of x is the smallest integer $\tau x \in (\widehat{\Upsilon}_{\underline{i}})_0$ such that $x < \tau x$ and $i_x = i_{\tau x}$.
- The set of abutters of x is the subset $V_{\underline{i}}(x) \subset (\widehat{\Upsilon}_{\underline{i}})_0$ formed by the vertices y such that $x < y < \tau x$ and i_y is adjacent to i_x in Δ .

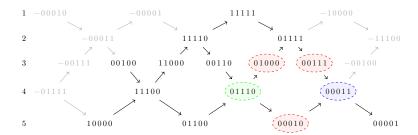
Theorem [C.]

The coordinate map has the mesh-additivity property:

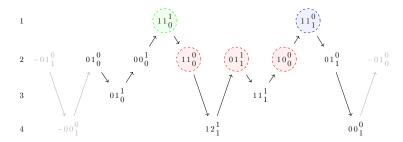
$$\rho(\tau x) + \rho(x) = \sum_{y \in V_i(x)} \rho(y)$$

for all $x \in (\widehat{\Upsilon}_i)_0$.

For the previous example in type A_5 , we highlight a mesh:



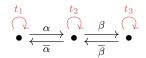
For the previous example in type D₄, we highlight a mesh:



The ambient category

Let Π be the 2-dimensional Ginzburg dg algebra associated with an orientation Q of Δ over some field K.

For example, if $\Delta=\mathsf{A}_3$, then Π is the dg path algebra given by



where black arrows have degree 0 and red arrows have degree -1. The differential is determined by $d(t_1 + t_2 + t_3) = [\alpha, \overline{\alpha}] + [\beta, \overline{\beta}]$.

It is connective and $H^0(\Pi)$ is the preprojective algebra of Q.

It is smooth and the perfectly valued derived category $pvd(\Pi)$ is a 2-Calabi–Yau triangulated category.

A categorification of the root system

Each simple dg Π -module S_i corresponding to $i \in \Delta_0$ is 2-spherical and yields a spherical twist functor (see Seidel-Thomas, 2001)

$$T_i : \operatorname{pvd}(\Pi) \longrightarrow \operatorname{pvd}(\Pi)$$

The map $[S_i] \mapsto \alpha_i$ induces an isomorphism between $K_0(\operatorname{pvd}(\Pi))$ and the root lattice of Δ .

The action of T_i on $K_0(\operatorname{pvd}(\Pi))$ identifies with the action of the simple reflection $s_i \in W$ on the root lattice.

Categories associated with reduced words

For $k \in \mathbb{Z}$, we define the following object of $\operatorname{pvd}(\Pi)$:

$$M_{k}^{\underline{i}} = \begin{cases} T_{i_{1}} T_{i_{2}} \cdots T_{i_{k-1}}(S_{i_{k}}) & \text{if } k \geq 1, \\ \Sigma T_{i_{0}}^{-1} T_{i_{-1}}^{-1} \cdots T_{i_{k+1}}^{-1}(S_{i_{k}}) & \text{if } k \leq 0, \end{cases}$$

where Σ denotes the suspension functor of $\operatorname{pvd}(\Pi)$.

Definition

- The repetition category $\mathcal{R}(\underline{i})$ is the full additive subcategory of $\operatorname{pvd}(\Pi)$ generated by the indecomposable objects $M_{\overline{k}}^{\underline{i}}$ for $k \in \mathbb{Z}$.
- The category of representations $C(\underline{i})$ is the full subcategory of $R(\underline{i})$ whose objects have cohomology concentrated in degree zero.

Categorification of combinatorial AR quivers

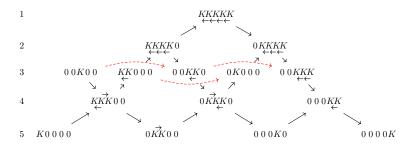
Proposition [Buan-lyama-Reiten-Scott, 2009; Amiot-lyama-Reiten-Todorov, 2012]

- The indecomposable objects of $C(\underline{i})$ are the $M_k^{\underline{i}}$ for $1 \leq k \leq N$, where N is the length of w_0 .
- As representations of the preprojective algebra, they coincide with certain modules called layers.
- If \underline{i} is a source sequence for an orientation Q of Δ , then $C(\underline{i})$ is equivalent to $\operatorname{mod} KQ$ (as a K-linear category).

Theorem [C.]

The combinatorial AR quiver $\Upsilon_{\underline{i}}$ is isomorphic to the quiver obtained from the Gabriel quiver of $\mathcal{C}(\underline{i})$ by removing all arrows parallel to paths of length ≥ 2 .

For the previous example in type A₅, the Gabriel quiver of $\mathcal{C}(\underline{\boldsymbol{i}})$ is the following:



Categorification of the mesh-additivity property

Theorem [C.]

Given a vertex $x \in (\widehat{\Upsilon}_{\underline{i}})_0$, choose an ordering y_1, \ldots, y_t of the set of abutters $V_{\underline{i}}(x)$ such that $k \leq l$ whenever there is a path from y_k to y_l in $\widehat{\Upsilon}_{\underline{i}}$. Then there are indecomposable objects X_1, \ldots, X_{t-1} in $\mathcal{R}(i)$ and a diagram of the form

$$\Sigma^{-1}M_{x}^{\underline{i}} = X_{t} \xrightarrow{\kappa} X_{t-1} \xrightarrow{} \cdots \xrightarrow{} X_{2} \xrightarrow{\kappa} X_{1} \xrightarrow{\kappa} X_{0} = M_{\tau x}^{\underline{i}}$$

$$M_{y_{t}}^{\underline{i}} \qquad M_{y_{2}}^{\underline{i}} \qquad M_{y_{1}}^{\underline{i}}$$

where the triangles above are distinguished triangles in $pvd(\Pi)$.

Towards a derived category

We would like to define a category $\mathcal{D}(\underline{i})$ analog to $\mathcal{D}^b(\operatorname{mod} KQ)$.

Problem: C(i) is not an abelian category in general!

We have a faithful functor:

$$\mathcal{D}^b(\operatorname{mod} KQ) \longrightarrow \operatorname{pvd}(\Pi)$$

If \underline{i} is a source sequence for Q, then the objects in the image of this inclusion are those of $\mathcal{R}(\underline{i})$.

Problem: The functor above is not full!

The combinatorially-derived category

We construct a certain ideal \mathcal{I} of $\mathcal{R}(\underline{i})$ and define the c-derived category $\mathcal{D}(\underline{i})$ as the quotient $\mathcal{R}(\underline{i})/\mathcal{I}$.

Proposition

If \underline{i} is a source sequence for an orientation Q of Δ , then $\mathcal{D}(\underline{i})$ is equivalent to $\mathcal{D}^b(\operatorname{mod} KQ)$ (as a K-linear category).

Theorem [C.]

The combinatorial repetition quiver $\widehat{\Upsilon}_{\underline{i}}$ is isomorphic to the quiver obtained from the Gabriel quiver of $\mathcal{D}(\underline{i})$ by removing all arrows parallel to paths of length ≥ 2 .

The Euler form

The category $\mathcal{D}(\underline{i})$ inherits the suspension functor Σ from $\operatorname{pvd}(\Pi)$.

We define the Euler form by

$$\langle M, N \rangle = \sum_{k \in \mathbb{Z}} (-1)^k \dim_K \operatorname{Hom}_{\mathcal{D}(\underline{i})}(M, \Sigma^k N).$$

Theorem [C.]

For $x, y \in (\widehat{\Upsilon}_i)_0$, we have

$$\langle M_{\underline{x}}^{\underline{\boldsymbol{i}}}, M_{\underline{y}}^{\underline{\boldsymbol{i}}} \rangle + \langle M_{\underline{y}}^{\underline{\boldsymbol{i}}}, M_{\underline{x}}^{\underline{\boldsymbol{i}}} \rangle = (\rho(x), \rho(y)),$$

where (-,-) is the Cartan-Killing form on the root lattice of Δ .

Thank you for your attention!

References 1

- [AIRT12] Claire Amiot, Osamu Iyama, Idun Reiten, and Gordana Todorov. *Preprojective algebras and c-sortable words*. Proc. Lond. Math. Soc. (3) **104** (2012), no. 3, 513–539.
- [Béd99] Robert Bédard. On commutation classes of reduced words in Weyl groups. European J. Combin. 20 (1999), no. 6, 483–505.
- [BIRS09] A. B. Buan, O. Iyama, I. Reiten, and J. Scott. *Cluster structures for 2-Calabi-Yau categories and unipotent groups*. Compos. Math. **145** (2009), no. 4, 1035–1079.
- [Can25] Ricardo Canesin. A categorification of combinatorial Auslander-Reiten quivers. 2025. arXiv: 2505.06147 [math.RT].

References II

- [FO21] Ryo Fujita and Se-jin Oh. *Q-data and representation theory of untwisted quantum affine algebras*. Comm. Math. Phys. **384** (2021), no. 2, 1351–1407.
- [HL15] David Hernandez and Bernard Leclerc. Quantum Grothendieck rings and derived Hall algebras. J. Reine Angew. Math. 701 (2015), 77–126.
- [OS19] Se-jin Oh and Uhi Rinn Suh. Combinatorial Auslander–Reiten quivers and reduced expressions. J. Korean Math. Soc. **56** (2019), no. 2, 353–385.
- [ST01] Paul Seidel and Richard Thomas. Braid group actions on derived categories of coherent sheaves. Duke Math. J. 108 (2001), no. 1, 37–108.